MATH 454 SECTION 002 Quiz 8

March 28, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Find the solution of the vibrating (circular) membrane problem (i.e., the edges are fixed) in the case where $u(\rho, \varphi, 0)=0$ and $u_{t}(\rho, \varphi, 0)=1,0<\rho<a$. [Hint: The wave equation is written as $u_{t t}=c^{2} \Delta u$, where the Laplacian in polar coordinates is given by $\Delta=\partial_{\rho \rho}+(1 / \rho) \partial_{\rho}+\left(1 / \rho^{2}\right) \partial_{\varphi \varphi}$. You can use the facts that $\Phi^{\prime \prime}(\varphi)+\mu \Phi(\varphi)=0, \Phi(-\pi)=\Phi(\pi)$, $\Phi^{\prime}(-\pi)=\Phi^{\prime}(\pi)$ is solved as $\Phi(\varphi)=A \cos m \varphi+B \sin m \varphi, \mu=m^{2}, m=0,1,2, \cdots$. Also note that $T^{\prime \prime}(t)+\lambda c^{2} T(t)=0, T(0)=0$ is solved as $T(t)=\sin (c t \sqrt{\lambda})$. Finally we note that $A_{m n}, B_{m n}$ satisfy $1=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{c x_{n}^{(m)}}{a} J_{m}\left(\frac{\rho x_{n}^{(m)}}{a}\right)\left(A_{m n} \cos m \varphi+B_{m n} \sin m \varphi\right)$ when $\left.A_{0 n}=\frac{2 a}{c}\left[x_{n}^{(0) 2} J_{1}\left(x_{n}^{(0)}\right)\right]^{-1}\left(J_{0}\left(x_{n}^{(0)}\right)=0\right), A_{m n}=B_{m n}=0(m \geq 1).\right]$

Solution [8]

$$
\begin{cases}u_{t t}=c^{2} \nabla^{2} u=c^{2}\left(u_{\rho \rho}+\frac{1}{\rho} u_{\rho}+\frac{1}{\rho^{2}} u_{\varphi \varphi}\right), & 0 \leq \rho<a, \quad t>0 \\ u(\rho, \varphi, t)=0, & \rho=a, \quad t>0 \\ u(\rho, \varphi, 0)=0, \quad u_{t}(\rho, \varphi, 0)=1, & 0 \leq \rho<a\end{cases}
$$

We look for separated solutions of the form [2] $u(\rho, \varphi, t)=R(\rho) \Phi(\varphi) T(t)$ (the form $u=R T$ is also fine because we can assume that u is independent of φ from the initial and boundary conditions). By $-\lambda=\left(1 / c^{2}\right) T^{\prime \prime} / T$ and $-\mu=\Phi^{\prime \prime} / \Phi$, we obtain

$$
\begin{aligned}
& \Phi^{\prime \prime}(\varphi)+\mu \Phi(\varphi)=0, \quad \Phi(-\pi)=\Phi(\pi), \quad \Phi^{\prime}(-\pi)=\Phi^{\prime}(\pi) \\
& R^{\prime \prime}(\rho)+\frac{1}{\rho} R^{\prime}(\rho)+\left(\lambda-\frac{\mu}{\rho^{2}}\right) R(\rho)=0, \quad R(a)=0 \\
& T^{\prime \prime}(t)+\lambda c^{2} T(t)=0, \quad T(0)=0 .
\end{aligned}
$$

The equation for Φ is solved as $\Phi(\varphi)=A \cos m \varphi+B \sin m \varphi, \mu=m^{2}, m=0,1,2, \cdots$. The equation for T is solved as $T(t)=\sin (c t \sqrt{\lambda})$. From the second equation we obtain [2] $R(\rho)=J_{m}(\rho \sqrt{\lambda})$. Since $R(a)=0$, we obtain $[2] \sqrt{\lambda}=x_{n}^{(m)} / a$ where $J_{m}\left(x_{n}^{(m)}\right)=0, x_{n}^{(m)}>0$. The general solution is obtained as

$$
u(\rho, \varphi, t)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\frac{\rho x_{n}^{(m)}}{a}\right)\left(A_{m n} \cos m \varphi+B_{m n} \sin m \varphi\right) \sin \frac{c t x_{n}^{(m)}}{a}
$$

To satisfy the condition $u_{t}(\rho, \varphi, 0)=1, A_{m n}, B_{m n}$ must satisfy

$$
1=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{c x_{n}^{(m)}}{a} J_{m}\left(\frac{\rho x_{n}^{(m)}}{a}\right)\left(A_{m n} \cos m \varphi+B_{m n} \sin m \varphi\right)
$$

Since $A_{0 n}=(2 a / c)\left[x_{n}^{(0) 2} J_{1}\left(x_{n}^{(0)}\right)\right]^{-1}\left(J_{0}\left(x_{n}^{(0)}\right)=0\right), A_{m n}=B_{m n}=0(m \geq 1)$, we obtain $[2]$

$$
u(\rho, \varphi, t)=\frac{2 a}{c} \sum_{n=1}^{\infty} \frac{1}{x_{n}^{2} J_{1}\left(x_{n}\right)} J_{0}\left(\frac{\rho x_{n}}{a}\right) \sin \frac{c t x_{n}}{a} .
$$

