MATH 454 SECTION 002 Quiz 7

March 14, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Solve the initial-value problem for the heat equation $u_{t}=K \nabla^{2} u$ in the column $0<x<L_{1}, 0<y<L_{2}$ with the boundary conditions $u(0, y, t)=0, u_{x}\left(L_{1}, y, t\right)=0$, $u(x, 0, t)=0, u_{y}\left(x, L_{2}, t\right)=0$ and the initial condition $u(x, y, 0)=1$. [Hint: You can start with the general solution below without deriving it. If we write $u(x, y, t)=\phi_{1}(x) \phi_{2}(y) T(t)$, we can introduce separation constants as $\frac{T^{\prime}}{T}=-\lambda K, \frac{\phi_{1}^{\prime \prime}}{\phi_{1}}=-\mu_{1}, \frac{\phi_{2}^{\prime \prime}}{\phi_{2}}=-\mu_{2}$, where $\lambda=\mu_{1}+\mu_{2}$. You can use the facts that $\phi^{\prime \prime}+\mu \phi=0, \phi(0)=\phi^{\prime}(L)=0$ is solved as $\phi(x)=\phi^{(m)}(x)=\sin \left(\left(m-\frac{1}{2}\right) \pi x / L\right), \mu=\mu^{(m)}=\left(\left(m-\frac{1}{2}\right) \pi / L\right)^{2}(m=1,2, \ldots)$. They satisfy $\int_{0}^{L} \phi^{(m)}(x) d x=L /\left[\left(m-\frac{1}{2}\right) \pi\right]$ and $\int_{0}^{L}\left[\phi^{(m)}(x)\right]^{2} d x=\frac{L}{2}$. The general solution is written as $u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m n} \phi_{1}^{(m)}(x) \phi_{2}^{(n)}(y) e^{-\lambda_{m n} K t}$, where $\lambda_{m n}=$ $\left.\left(\left(m-\frac{1}{2}\right) \pi / L_{1}\right)^{2}+\left(\left(n-\frac{1}{2}\right) \pi / L_{2}\right)^{2}.\right]$

Solution [8] Let us write $u(x, y, t)=\phi_{1}(x) \phi_{2}(y) T(t)$. We obtain $\phi_{1}=\phi_{1}^{(m)}=\sin \frac{\left(m-\frac{1}{2}\right) \pi x}{L_{1}}$ $(m=1,2, \ldots), \phi_{2}=\phi_{2}^{(n)}=\sin \frac{\left(n-\frac{1}{2}\right) \pi y}{L_{2}}(n=1,2, \ldots)$, and $T(t)=e^{-\lambda K t}$. The general solution is written as

$$
u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m n} \phi_{1}^{(m)}(x) \phi_{2}^{(n)}(y) e^{-\lambda_{m n} K t}
$$

where $\lambda_{m n}=\left(\left(m-\frac{1}{2}\right) \pi / L_{1}\right)^{2}+\left(\left(n-\frac{1}{2}\right) \pi / L_{2}\right)^{2}$. By the initial condition we have [2]

$$
1=\sum_{m^{\prime}=1}^{\infty} \sum_{n^{\prime}=1}^{\infty} B_{m^{\prime} n^{\prime}} \phi_{1}^{\left(m^{\prime}\right)}(x) \phi_{2}^{\left(n^{\prime}\right)}(y) .
$$

We multiply $\phi_{1}^{(m)}(x) \phi_{2}^{(n)}(y)$ on both sides and integrate both sides over x, y [2]:

$$
\begin{aligned}
& \int_{0}^{L_{2}} \int_{0}^{L_{1}} \phi_{1}^{(m)}(x) \phi_{2}^{(n)}(y) d x d y=\int_{0}^{L_{2}} \int_{0}^{L_{1}} \sum_{m^{\prime}=1}^{\infty} \sum_{n^{\prime}=1}^{\infty} B_{m^{\prime} n^{\prime} \phi_{1}^{\left(m^{\prime}\right)}}(x) \phi_{2}^{\left(n^{\prime}\right)}(y) \phi_{1}^{(m)}(x) \phi_{2}^{(n)}(y) d x d y \\
& \text { LHS }=\int_{0}^{L_{2}} \phi_{2}^{(n)}(y) d y \int_{0}^{L_{1}} \phi_{1}^{(m)}(x) d x=\frac{L_{1}}{\left(m-\frac{1}{2}\right) \pi} \frac{L_{2}}{\left(n-\frac{1}{2}\right) \pi}, \\
& \text { RHS }=\sum_{m^{\prime}=1}^{\infty} \sum_{n^{\prime}=1}^{\infty} B_{m^{\prime} n^{\prime}} \int_{0}^{L_{1}} \phi_{1}^{\left(m^{\prime}\right)}(x) \phi_{1}^{(m)}(x) d x \int_{0}^{L_{2}} \phi_{2}^{\left(n^{\prime}\right)}(y) \phi_{2}^{(n)}(y) d y=B_{m n} \frac{L_{1}}{2} \frac{L_{2}}{2},
\end{aligned}
$$

where we used $\int_{0}^{L_{1}} \phi_{1}^{\left(m^{\prime}\right)}(x) \phi_{1}^{(m)}(x) d x=0\left(m^{\prime} \neq m\right)$ and $\int_{0}^{L_{2}} \phi_{2}^{\left(n^{\prime}\right)}(y) \phi_{2}^{(n)}(y) d y=0\left(n^{\prime} \neq n\right)$ from the Sturm-Liouville theory [2]. Finally we obtain [2]

$$
u(x, y, t)=\frac{4}{\pi^{2}} \sum_{m, n=1}^{\infty} \frac{\sin \left[\left(m-\frac{1}{2}\right)\left(\pi x / L_{1}\right)\right]}{m-\frac{1}{2}} \frac{\sin \left[\left(n-\frac{1}{2}\right)\left(\pi y / L_{2}\right)\right]}{n-\frac{1}{2}} e^{-\lambda_{m n} K t}
$$

