MATH 454 SECTION 002 Quiz 5

February 21, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Find the eigenvalues and eigenfunctions for the Sturm-Liouville eigenvalue problem

$$
\phi^{\prime \prime}(x)+\lambda \phi(x)=0, \quad \phi(0)=\phi(L), \quad \phi^{\prime}(0)=\phi^{\prime}(L)
$$

[Hint: You can use the facts that $\phi(x)=0$ if $\lambda<0, \phi(x)=C$ (constant) if $\lambda=0$, and we can write $\phi(x)=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x)$ if $\lambda>0$.]

Solution [6] Let us assume $\lambda>0$. From the boundary conditions we obtain [2]

$$
\left\{\begin{array} { l }
{ \phi (0) = \phi (L) , } \tag{1}\\
{ \phi ^ { \prime } (0) = \phi ^ { \prime } (L) , }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=A \cos (\sqrt{\lambda} L)+B \sin (\sqrt{\lambda} L) \\
B=-A \sin (\sqrt{\lambda} L)+B \cos (\sqrt{\lambda} L)
\end{array}\right.\right.
$$

We will consider two cases [1]. If $\sin (\sqrt{\lambda} L) \neq 0$, then

$$
B=\frac{1-\cos (\sqrt{\lambda} L)}{\sin (\sqrt{\lambda} L)} A
$$

Since we look for nontrivial solutions, we suppose $A \neq 0$. We obtain
$[1-\cos (\sqrt{\lambda} L)] B=-A \sin (\sqrt{\lambda} L) \quad \Rightarrow \quad[1-\cos (\sqrt{\lambda} L)]^{2}+\sin ^{2}(\sqrt{\lambda} L)=2[1-\cos (\sqrt{\lambda} L)]=0$.
Thus, [1]

$$
\begin{equation*}
\cos (\sqrt{\lambda} L)=1 \quad \Leftrightarrow \quad \sqrt{\lambda} L=2 n \pi, \quad n=1,2, \ldots \tag{2}
\end{equation*}
$$

However $\sin (\sqrt{\lambda} L)=0$ for these $\sqrt{\lambda}$, i.e., $A=B=0$ in this case.
Next let us suppose $\sin (\sqrt{\lambda} L)=0$, or $\sqrt{\lambda} L=n \pi(n=1,2, \ldots)$. In this case (1) becomes

$$
A=A \cos (\sqrt{\lambda}), \quad B=B \cos (\sqrt{\lambda})
$$

In order to have nonzero A, B, we obtain (2). Finally we obtain [1]

$$
\phi_{n}(x)=A \cos \frac{2 n \pi x}{L}+B \sin \frac{2 n \pi x}{L}, \quad \lambda_{n}=\left(\frac{2 n \pi}{L}\right)^{2}, \quad n=1,2, \ldots,
$$

and [1] $\phi_{0}(x)=C, \lambda_{0}=0$, where A, B, C are arbitrary constants.
Alternative Solution We can also focus on two cases where $1-\cos (\sqrt{\lambda} L) \neq 0$ and $=0$. In the former case we can proceed as

$$
\begin{equation*}
A=\frac{\sin (\sqrt{\lambda} L)}{1-\cos (\sqrt{\lambda} L)} B, \quad B=\frac{-\sin (\sqrt{\lambda} L)}{1-\cos (\sqrt{\lambda} L)} A \quad \Rightarrow \tag{2}
\end{equation*}
$$

Alternative Solution We can write (1) as

$$
M\binom{A}{B}=\binom{0}{0}, \quad M=\left(\begin{array}{cc}
1-\cos (\sqrt{\lambda} L) & -\sin (\sqrt{\lambda} L) \\
\sin (\sqrt{\lambda} L) & 1-\cos (\sqrt{\lambda} L)
\end{array}\right)
$$

Then, "nonzero A, B " $\Leftrightarrow \operatorname{det} M=0 \Leftrightarrow(2)$.

