MATH 454 SECTION 002 Quiz 4

February 14, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Find the steady-state solution of the heat equation $u_{t}=K \nabla^{2} u$ in the slab $0<z<L$, with boundary conditions $\left[u_{z}-h\left(u-T_{0}\right)\right](x, y, 0)=0$ and $\left[u_{z}+h\left(u-T_{1}\right)\right](x, y, L)=0$. Assume that K, h, T_{0}, T_{1} are all positive constants.

Solution [6] In this slab problem, the solution u is independent of x, y. Furthermore the solution does not depend on t in steady state. We write the steady-state solution as [1] $U(z)=u(x, y, z, t)$. The heat equation and the boundary conditions are then written as [1]

$$
U^{\prime \prime}(z)=0, \quad 0<z<L, \quad U^{\prime}(0)-h\left[U(0)-T_{0}\right]=U^{\prime}(L)+h\left[U(L)-T_{1}\right]=0
$$

The general solution of $U(z)$ is obtained as [1]

$$
U(z)=A+B z
$$

where constants A, B are determined by the boundary conditions. Using the boundary conditions we have

$$
B-h\left(A-T_{0}\right)=0, \quad B+h\left(A+B L-T_{1}\right)=0
$$

That is,

$$
B=h\left(A-T_{0}\right), \quad(1+h L) B+h A-h T_{1}=0
$$

We obtain [1]

$$
(1+h L)\left[h\left(A-T_{0}\right)\right]+h A-h T_{1}=0 \quad \Rightarrow \quad A=\frac{(1+h L) T_{0}+T_{1}}{2+h L}
$$

and then [1]

$$
B=h\left(A-T_{0}\right) \quad \Rightarrow \quad B=\frac{h\left(T_{1}-T_{0}\right)}{2+h L} .
$$

Finally we obtain [1]

$$
\begin{aligned}
u(x, y, z, t) & =U(z) \\
& =\frac{(1+h L) T_{0}+T_{1}}{2+h L}+\frac{h\left(T_{1}-T_{0}\right)}{2+h L} z \\
& =\frac{T_{1}(1+h z)+T_{0}[1+h(L-z)]}{2+h L}
\end{aligned}
$$

