MATH 454 SECTION 002 Quiz 3

January 31, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Find the mean square error for the Fourier series of $f(x)=x^{2},-\pi \leq x \leq \pi$. Then, show that $\sigma_{N}^{2}=O\left(N^{-3}\right)$ as $N \rightarrow \infty$. [Hint: When the Fourier series is written as $f(x)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \cos (n \pi x / L)+B_{n} \sin (n \pi x / L)\right]$, where $L=\pi$, we have $\sigma_{N}^{2}=\frac{1}{2 L} \int_{-L}^{L}\left[f(x)-f_{N}(x)\right]^{2} d x=\frac{1}{2} \sum_{n=N+1}^{\infty}\left(A_{n}^{2}+B_{n}^{2}\right)$. If useful, you can use the formulae $(1 / L) \int_{-L}^{L} x^{2} \cos (n \pi x / L) d x=4 L^{2}(-1)^{n} /(n \pi)^{2}$ and $\left.(N+1)^{-3}=N^{-3}(1-(3 / N)+\cdots).\right]$

Solution [6] The Fourier series is obtained as

$$
f(x)=x^{2}=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty}\left[A_{n} \cos (n x)+B_{n} \sin (n x)\right]
$$

where $B_{n}=0$ and

$$
A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos (n x) d x=\frac{4}{n^{2}}(-1)^{n}
$$

Thus, the mean square error is obtained as [2]

$$
\sigma_{N}^{2}=\frac{1}{2} \sum_{n=N+1}^{\infty}\left(A_{n}^{2}+B_{n}^{2}\right)=8 \sum_{n=N+1}^{\infty} \frac{1}{n^{4}} .
$$

We note that $\ddagger[2]$

$$
\sum_{n=N+1}^{\infty} \frac{1}{n^{4}} \leq \int_{N+1}^{\infty} \frac{1}{(x-1)^{4}} d x
$$

The integral is calculated as

$$
\int_{N+1}^{\infty} \frac{1}{(x-1)^{4}} d x=\int_{N}^{\infty} \frac{1}{x^{4}} d x=\frac{1}{3 N^{3}}
$$

That is,

$$
\sum_{n=N+1}^{\infty} \frac{1}{n^{4}} \leq \frac{1}{3 N^{3}}
$$

Therefore we obtain [2]

$$
\sigma_{N}^{2}=O\left(N^{-3}\right)
$$

\ddagger The lower bound is estimated as

$$
\sum_{n=N+1}^{\infty} \frac{1}{n^{4}} \geq \int_{N+1}^{\infty} \frac{1}{x^{4}} d x=\frac{1}{3(N+1)^{3}}=\frac{1}{3 N^{3}}\left(1-\frac{3}{N}+\cdots\right)
$$

Therefore we obtain

$$
\sum_{n=N+1}^{\infty} \frac{1}{n^{4}}=\frac{1}{3 N^{3}}+O\left(\frac{1}{N^{4}}\right) .
$$

