MATH 454 SECTION 002 Quiz 2

January 24, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Find the Fourier sine series for $f(x)=e^{x}, 0<x<L$. [Hint: If necessary, you can use the formula $\left.\int_{0}^{L} e^{x} \sin (c x) d x=\frac{1}{1+c^{2}}\left(c-c e^{L} \cos (c L)+e^{L} \sin (c L)\right).\right]$

Solution [8] We extend $f(x)$ to the interval $-L<x<L$ by defining [2]

$$
f_{O}(x)= \begin{cases}e^{x} & \text { for } 0<x<L \\ 0 & \text { for } x=0 \\ -e^{-x} & \text { for }-L<x<0\end{cases}
$$

We consider the Fourier series for this odd function f_{O}. Note that $A_{0}=A_{n}=0(n=1,2, \ldots)$ [2]. Hence the Fourier series is written as

$$
f_{O}(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}, \quad-L<x<L
$$

The coefficients B_{n} are given by [2]

$$
B_{n}=\frac{1}{L} \int_{-L}^{L} f_{O}(x) \sin \frac{n \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} e^{x} \sin \frac{n \pi x}{L} d x .
$$

By doing the integral, we have

$$
B_{n}=\frac{2}{L} \frac{1}{1+\left(\frac{n \pi}{L}\right)^{2}}\left[\frac{n \pi}{L}-\frac{n \pi}{L} e^{L}(-1)^{n}\right]=\frac{2 \pi}{L^{2}} n \frac{1-e^{L}(-1)^{n}}{1+(n \pi / L)^{2}}
$$

Therefore the Fourier sine series is obtained as [2]

$$
e^{x}=\frac{2 \pi}{L^{2}} \sum_{n=1}^{\infty} n \frac{1-e^{L}(-1)^{n}}{1+(n \pi / L)^{2}} \sin \frac{n \pi x}{L}, \quad 0<x<L
$$

