MATH 454 SECTION 002 Quiz 1

January 17, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Find the separated solutions of $u_{x x}+y u_{y}+u=0$. [Hint: Classify the solution into three cases so that you always have nonnegative numbers inside the square root and so that i doesn't appear explicitly. Also you can use the fact that the solution to $x f^{\prime}(x)+a f(x)=0$ (a is a constant) is $f(x)=C /|x|^{a}=C^{\prime} / x^{a}$, where C, C^{\prime} are constants.]

Solution [6] We substitute $X(x) Y(y)$ for $u(x, y)$ in the equation and obtain $X^{\prime \prime} Y+y X Y^{\prime}+$ $X Y=0$. By introducing the separation constant λ, we have $[2] \frac{X^{\prime \prime}}{X}=\lambda, y \frac{Y^{\prime}}{Y}+1=-\lambda$, or

$$
X^{\prime \prime}-\lambda X=0, \quad y Y^{\prime}+(1+\lambda) Y=0
$$

The first equation has two linearly independent solutions $e^{ \pm \sqrt{\lambda} x}$ for $\lambda \neq 0$, and $1, x$ for $\lambda=0$. Therefore the general solution is written as [2]

$$
X= \begin{cases}A_{1}+A_{2} x & \lambda=0, \\ A_{1} e^{\sqrt{\lambda} x}+A_{2} e^{-\sqrt{\lambda} x} & \lambda \neq 0,\end{cases}
$$

where A_{1}, A_{2} are constants. The second equation is solved as

$$
Y=\frac{C}{|y|^{1+\lambda}}
$$

where C is a constant. We note that $A_{1} e^{\sqrt{\lambda} x}+A_{2} e^{-\sqrt{\lambda} x}=A_{1} e^{i \sqrt{|\lambda|} x}+A_{2} e^{-i \sqrt{|\lambda|} x}=$ $\left(A_{1}+A_{2}\right) \cos (\sqrt{|\lambda|} x)+i\left(A_{1}-A_{2}\right) \sin (\sqrt{|\lambda|} x)$ for $\lambda<0$. Therefore we obtain [2]
$u(x, y)= \begin{cases}\left(A_{1} e^{\sqrt{\lambda} x}+A_{2} e^{-\sqrt{\lambda} x}\right)\left(1 /|y|^{1+\lambda}\right) & \text { for } \lambda>0, \\ \left(A_{1}+A_{2} x\right)(1 /|y|) & \text { for } \lambda=0, \\ \left(A_{1} \cos (\sqrt{|\lambda|} x)+A_{2} \sin (\sqrt{|\lambda|} x)\right)\left(1 /|y|^{1+\lambda}\right) & \text { for } \lambda<0,\end{cases}$
where A_{1}, A_{2} are constants.

Alternative Solution For example we can also choose λ as $\frac{X^{\prime \prime}}{X}+1=-\lambda, y \frac{Y^{\prime}}{Y}=\lambda$, or

$$
X^{\prime \prime}+(1+\lambda) X=0, \quad y Y^{\prime}-\lambda Y=0
$$

Then we obtain
$u(x, y)= \begin{cases}\left(A_{1} e^{\sqrt{|\lambda|-1} x}+A_{2} e^{-\sqrt{|\lambda|-1} x}\right)|y|^{\lambda} & \text { for } \lambda<-1, \\ \left(A_{1}+A_{2} x\right)(1 /|y|) & \text { for } \lambda=-1, \\ \left(A_{1} \cos (\sqrt{\lambda+1} x)+A_{2} \sin (\sqrt{\lambda+1} x)\right)|y|^{\lambda} & \text { for } \lambda>-1 .\end{cases}$

