Chapter 7
Green’s functions

What we know

We have already seen Green’s functions in Chapter 5. For example the heat equation
(5.1), uy = Kuyy (x € (—o0,00), t > 0) with the initial condition u(x,0) = f(x), is
solved as

unt) = [ Glein )., .

where G(x,x';1) is the heat kernel given in (5.4):

Glx 1) = ﬁﬂm’fﬂmx 72)
Kt

Thus the linear partial differential equation is solved in terms of an integral trans-
form.

Let us consider the wave equation (5.7), uy, = %ty (x € (—o0,00), ¢ > 0) with the
initial conditions u(x,0) = fi(x), u;(x,0) = f2(x). As shown in (5.9), similarly the
solution is written as

u(x,t) = /oo G (x,x:0) fi (x')dx'+/m G (x,x;1) fo (' )dx’,
where
G (x,x's1) = % [6(x— +et) +8(x—x —er)],

1
G (x,x;1) = ” [sgn(x—x'+ct) —sgn(x—x" —ct)] .
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The Green’s function for the heat equation !

If the Green’s function is known, we can write down the solution as integral forms.
Hereafter we will focus on the Green’s function for the heat equation.

Case 1 (—oo < x < o)

Let us consider

uy — Kugy = h(x,1), 0<r<T, —o<x<oo,
u=f(x), t=0, —oo<x< oo

We write
u(x,t) =v(x,1) +wix,t),

and split the equation into two equations:

Vi —Kvy =0, 0<t<T, —o0<x< oo,
v=f(x), t=0, —oo0<x< oo,

and

w; — Kwyy = h(x,1), 0<t<T, —co<x<oo,
w =0, t=0, —oco<x<oo.

Let us look at the equation for w. Using the Fourier transform w(u,7), we have
Wi+ u2Kw =h(u,r),  w(u,0)=0.
Noting < {We“zm} =il Kl 4+ 12K et KT | we obtain
W= /Ot ef“zK(’ﬂ)it(u,s)ds.

We obtain w as

! This section corresponds to §8.4 of the textbook.
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oo 1 - .
w(x,t) = / [/ e_’"‘zK(’_S)h(u,s)ds} e™du

0
0 pt  poo ) ,
ZL/ // 67“2K<'7‘Y)h(x’,s)e’”(xfx)dx/dsdu
—o00JO J—o0o
Lo e
n E/O /—oo /—ooexp

/ol/_: W

Therefore we obtain

x—x

2
_ o e AT — (=) /[4K (t—5)] 1, ( o/ /
K(t—s) ([J lZK(t — s)> ] e h(x',s)dudx'ds

7(x7x/>2/[4K(’7‘Y)]h(x', s)dx'ds.

u(x,t) = /w G(x,x';t)f(x’)dx’+/t /oo G(x,x';t —s)h(X',s)dx'ds.
e 0 J-o

Case 2 (0 < x < )

Recall that (5.5), u; = Kuy, (t > 0, x € (0,00)) with the Dirichlet boundary condition
1(0,7) = 0 and initial condition u(x,0) = f(x), is solved as

u(x,t) = /Ow Gp(x,x';t) f(x')dx/,

where
Gp(x,x';t) = G(x,x';t) — G(x,—x';1),

and for the Neumann boundary condition u,(0,7) = 0 we have

u(x,t) = /Om Gy (x,x'51) f(x')dx,

where
Gy(x,x';t) = G(x,x';t) + G(x, —x;1).

Let us consider

ur — Kuyy = h(x,t), 0<t<T, 0<x<oo,
0, 0<t<T, x=0,
=0, t=0, 0<x<oo.
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We extend 4 as
h(x,t), x>0,

ho(x,t) = 0, x=0,
—h(—x,1), x<0.
Then we have Co
u(x,t) = /0 /OOG(x,x’,t —s)ho(x',s)dx'ds.
We obtain Do
u(x,t) :/0 /0 Gp(x, X't —s)h(x',s)dx ds.

Next we consider
Uy — Kuyy = h(x,t), 0<r<T, 0<x<oo,
u=>0, 0<t<T, x=0,
u=f(x), t=0, 0<x<oo.

The solution is obtained as
oo t  poo
u(x,t) = / Gp(x,x';t) f(x')dx' +/ / Gp(x, X't —s)h(x',s)dx'ds.
0 0 J0

In the case of the Neumann boundary condition u, = 0, we obtain

oo f 00
u(x,t) :/ GN(x,x';t)f(x')dx'+/ / Gy (x,x',t —s)h(x',s)dx ds.
0 0 Jo

Case3 (0 <x<L)

Let us solve
u; — Kuyy = 0, 0<t<T, O0<x<L,

u=0, 0<t<T, x=0,
u=0, 0<t<T, x=1L,
u=f(x), t=0, 0<x<L.

We have solved this equation using separation of variables, and obtained (cf., Chap-
ter 2)

P I PN L. ] B L= Sy
u(x,t)—in;l [/0 f(x)sdex sin——e . (7.3)

Therefore we can read off the Green’s function Gy, (x,x';1) as

2 & . nmx . nmx
Gp(x,x's1) = I Y sm%sm %e*(””/”z’“.
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We will find another expression of u(x,7) using the Fourier transform.
We extend f(x) as an odd 2L-periodic function by setting

f(x—2mL), 2mL < x < (2m+ 1)L,
Jfo(x) = 0, x=2mL, (2m+1)L, (2m+2)L,
—f(—=x+(2m+2)L), (2m+1)L <x< (2m+2)L,

where m = 0,£1,+2,.... Note that fo(x+2L) = fo(x) for all x. Then we have

o0 o ~(2m+1)L (2m+2)L
u(x,r) :/ G(x,x';1) fo(x')dx' = Z {/ + }G(x,x/;t)fo(x/)dx/.
—oo oo \J2mL @m+1)L
We obtain .
u(x,t) :/ Gr(x,x';t) f(x')dx, (7.4)
0
where

=

Gr(x,x;t) = Z [G(x,x' +2mL;t) — G(x,—x' + (2m+2)L;1)] .

m——oo

(7.4) is another expression of (7.3)
We can similarly solve

uy — Kuyy = h(x,1), 0<t<T, 0<x<L,
, 0<t<T, x=0,
, 0<t<T, x=1L,
u=f(x), t=0, 0<x<L.

We extend h(x,7) as an odd 2L-periodic function by setting

h(x—2mL,t), 2mL <x < (2m+1)L,
ho(x,t) = 0, x=2mL, (2m+1)L, (2m+2)L,
—h(—x+ (2m+2)L,1), 2m+1)L<x< (2m+2)L,

Note that hp(x+2L,t) = ho(x,t) for all x. Then we have

L t L
u(x,t):/o GL(x,x/,t)f(x/)dx/+/()/() GL(x,x ,t —s)h(x',s)dx'ds.
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One dimension 2

Let us consider the following ordinary differential equation.

yi=—f, 0<x<lL,
yZO’ ‘x:07L7

where f(x), 0 < x < L, is a piecewise smooth function.

We integrate both sides and obtain y'(x) ='(0) — [ f(x")dx’. By integrating one
more time, we obtain

y) =3O+ O [ [* 'y
= )’/(O)x—/0 /x” F(x"dx' dx"
VO [ War
where we used [; dx’ f(;‘/ dx"--- = [ydx" [ dx .... We note that
L
y(L) =y (0)L - /0 (L—x)f(xX)dx =0.
Hence,
L X
y(x) = % /0 (L—x)f(x)dx — /0 (x—x')f(x)dx
x L
= [[Fa-0)- -] rar+ 5 [(@ -6
= xi/(L_x)f(xl)dxl+/XL%(L—)C/)f(X/)dx/~

0

Therefore we can write

L
o) = [ Gl r)a, (1.5)
where ,
@’ 0< ¥ <x,
G(x,x') = (L) (7.6)
- ¥ <x <L

We note that the Green’s function G(x,x’) depends only on the equation and bound-
ary conditions, and is independent of f(x).

2 This section corresponds to §8.1 of the textbook.
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We note that the Green’s function G(x,x’) is the solution to

(7.7)

2G=—-8(x—x), 0<x<L,
G=0, x=0,L.

Let us first confirm that if G(x,x’) is the solution to (7.7), then y(x) is given by
(7.5). From (7.5) we have

L L
Y0 = [ 326() (W)Y = = [ 8(x—x)r () = —f(x).
Moreover y(0) = [ G(0,x') f(x')dx' = [(0)f(x')dx’ = 0 and similarly y(L) = 0.
Let us integrate the equation from x = x’ — 0 to x’ + 0. We have
X +0
Gy(¥' +0,x) — Gy(«' — 0,x') = —/ S(x—x)dx' = —1.
x'—=0
Thus G, has a jump at x = x". If we integrate (7.7) from O to x, we obtain

G (x,x') = G(0,x') — 0(x —x'),

where 0 (x —x') is the step function: 6(x) =1 for x > 0, = 1/2 for x =0, and = 0
for x < 0. By integrating the above equation from x = x' — 0 to x’ + 0, we obtain

X' +0
G(xX'+0,4) -G —0,x) = / G.(0,x")dx —/ 0(x—x")dx = 0.
Jx'—0 x'=0

X' 40

Hence G is continuous at x = x’.

Remark 1. The Green’s function (7.2) is the solution to

Gl‘ :KGX)C; t>07 xe (_00’00)7
G=38(x—x), =0, xx €(—oo,0).

Note that §(x) = 5= [~ e *dp.

We can solve (7.7) and get (7.6) just like we derived (7.5). Here let us solve (7.7)
by using the Sturm-Louville eigenproblem.
Let us consider

W (X)+ 2,0 (x) =0, $,(0) = (L) =0.

We obtain

L L
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We have almost always chosen the coefficient in ¢, to be 1, but here we choose
\/2/L noticing that [;’sin(nmx/L)?dx = L/2. Thus in this case

L
/ On(x)?dx=1.
0

Or we can write

<¢n7¢m> = 6mna ||¢nH =1

We expanded the functions v(z,7), R(z,t), and F(z) with the Sturm-Liouville
eigenfunctions when we solved (2.19) in Chapter 2. Similarly we write the Green’s
function as

Glx ) = ilAn%(x).

We have

G (x,X') = iAnq),;'(x) =-— iA,,?Ln(f)n(x) =—8(x—x).

n=1

We multiply ¢,,(x) and integrate both sides.

L L )
A n;lAnA«n¢n(X)¢m(X)dx = _/0 S(x—x )¢m(x)dx.

LHS = Z Ap2nSum = A, RHS = ¢m(x/)'

n=1

Hence, W)
_ 0¥
A, = )Ln.
We obtain _ /
Gxx)=Y 745"()6?"()6 ). (7.8)
n=1 n

This (7.8) is another expression of (7.6). The series in (7.8) converges uniformly for
x,x €[0,L].

The Green’s function G(x,x’) has the following properties.

Gy = 0 except when x = x’ (homogeneous equation).
G(0,x') =0 and G(L,x') = 0 (boundary conditions).
G(¥' +0,x') — G(¥ — 0,x') = 0 (continuity).

Gy(x¥ +0,x') — G(« = 0,x') = —1 (jump).

G(x,x') = G(',x) (reciprocity).

P> @I =

The Green’s function G(x,x’) is continuous but G, has a jump at x = x’.
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The conditions 1 through 4 uniquely determine G(x,x’). Indeed, by Condition 1
we can write G(x,x') = Ax+ B for x > x’ and Cx+ D for x < x’. Using Condition
2 we have G(x,x') = A(x — L) for x > x’ and Cx for x < x’. Condition 3 implies
A(x' — L) = Cx, and Condition 4 implies A —C = —1. Thus we uniquely obtain
(7.6).

Condition 5 is called the reciprocity relation. It means that G at x for the source
at ¥’ is the same as G at x’ for the source at x.

Theorem 1 (Reciprocity). We consider the Green’s function G(x,x') in (7.7). For
x,x' € [0,L], we have

G(x,x') = G(x',x).
Proof. We consider two sources:

Grc(x,x1) = =06(x—x1), Gru(x,x2) = —6(x —x2),

where x,x1,x; € [0,L], and G = 0 for x = 0,L. We multiply the first equation by
G(x,x;) and the second equation by G(x,x;) and integrate two equations:

L
/ G(x,22) Gy (x,x1 )dx = / G(x,x2)0 (x — x1)dx,
0
/Gxxl)Gxxxxz /Gxxl (x —x2)dx.

We note that
L L L
/0 G(x,x2)Gyx(x, %1 )dx = G(x,xg)Gx(x,xl)‘O —/O Gy (x,x2) Gy (x,x1)dx

L
= —/ G (x,x2)Gy(x,x1)dx,
0

L L gL
/()G(x,xl)Gxx(x,xz)dx G(x,xl)Gx(x,xz)‘O—/O G (x,x1)Gy(x,x2)dx

L
—/ Gy (x,x1)Gy(x,x2)dx.
Jo

Therefore we obtain
L L
/ G(x,x2)0(x —x1)dx = / G(x,x1)0(x —x2)dx.
0 0

This implies G(x1,x2) = G(x2,x1) and completes the proof. O



