Chapter 7

Green's functions

What we know

We have already seen Green's functions in Chapter 5. For example the heat equation (5.1), $u_{t}=K u_{x x}(x \in(-\infty, \infty), t>0)$ with the initial condition $u(x, 0)=f(x)$, is solved as

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{\infty} G\left(x, x^{\prime} ; t\right) f\left(x^{\prime}\right) d x^{\prime} \tag{7.1}
\end{equation*}
$$

where $G\left(x, x^{\prime} ; t\right)$ is the heat kernel given in (5.4):

$$
\begin{equation*}
G\left(x, x^{\prime} ; t\right)=\frac{1}{\sqrt{4 \pi K t}} e^{-\left(x-x^{\prime}\right)^{2} /(4 K t)} \tag{7.2}
\end{equation*}
$$

Thus the linear partial differential equation is solved in terms of an integral transform.

Let us consider the wave equation (5.7), $u_{t t}=c^{2} u_{x x}(x \in(-\infty, \infty), t>0)$ with the initial conditions $u(x, 0)=f_{1}(x), u_{t}(x, 0)=f_{2}(x)$. As shown in (5.9), similarly the solution is written as

$$
u(x, t)=\int_{-\infty}^{\infty} G^{(1)}\left(x, x^{\prime} ; t\right) f_{1}\left(x^{\prime}\right) d x^{\prime}+\int_{-\infty}^{\infty} G^{(2)}\left(x, x^{\prime} ; t\right) f_{2}\left(x^{\prime}\right) d x^{\prime}
$$

where

$$
\begin{aligned}
& G^{(1)}\left(x, x^{\prime} ; t\right)=\frac{1}{2}\left[\delta\left(x-x^{\prime}+c t\right)+\delta\left(x-x^{\prime}-c t\right)\right] \\
& G^{(2)}\left(x, x^{\prime} ; t\right)=\frac{1}{4 c}\left[\operatorname{sgn}\left(x-x^{\prime}+c t\right)-\operatorname{sgn}\left(x-x^{\prime}-c t\right)\right] .
\end{aligned}
$$

[^0]
The Green's function for the heat equation ${ }^{1}$

If the Green's function is known, we can write down the solution as integral forms. Hereafter we will focus on the Green's function for the heat equation.

Case $1(-\infty<x<\infty)$

Let us consider

$$
\left\{\begin{aligned}
u_{t}-K u_{x x}=h(x, t), & 0<t<T, \quad-\infty<x<\infty \\
u=f(x), & t=0, \quad-\infty<x<\infty
\end{aligned}\right.
$$

We write

$$
u(x, t)=v(x, t)+w(x, t),
$$

and split the equation into two equations:

$$
\left\{\begin{aligned}
v_{t}-K v_{x x}=0, & 0<t<T, \quad-\infty<x<\infty \\
v=f(x), & t=0, \quad-\infty<x<\infty
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
w_{t}-K w_{x x}=h(x, t), & 0<t<T, \quad-\infty<x<\infty \\
w=0, & t=0, \quad-\infty<x<\infty
\end{aligned}\right.
$$

Let us look at the equation for w. Using the Fourier transform $\tilde{w}(\mu, t)$, we have

$$
\tilde{w}_{t}+\mu^{2} K \tilde{w}=\tilde{h}(\mu, t), \quad \tilde{w}(\mu, 0)=0
$$

Noting $\frac{d}{d t}\left[\tilde{w} e^{\mu^{2} K t}\right]=\tilde{w}_{t} e^{\mu^{2} K t}+\mu^{2} K \tilde{w} e^{\mu^{2} K t}$, we obtain

$$
\tilde{w}=\int_{0}^{t} e^{-\mu^{2} K(t-s)} \tilde{h}(\mu, s) d s
$$

We obtain w as

[^1]\[

$$
\begin{aligned}
w(x, t) & =\int_{-\infty}^{\infty}\left[\int_{0}^{t} e^{-\mu^{2} K(t-s)} \tilde{h}(\mu, s) d s\right] e^{i \mu x} d \mu \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{0}^{t} \int_{-\infty}^{\infty} e^{-\mu^{2} K(t-s)} h\left(x^{\prime}, s\right) e^{i \mu\left(x-x^{\prime}\right)} d x^{\prime} d s d \mu \\
& =\frac{1}{2 \pi} \int_{0}^{t} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left[-K(t-s)\left(\mu-i \frac{x-x^{\prime}}{2 K(t-s)}\right)^{2}\right] e^{-\left(x-x^{\prime}\right)^{2} /[4 K(t-s)]} h\left(x^{\prime}, s\right) d \mu d x^{\prime} d s \\
& =\int_{0}^{t} \int_{-\infty}^{\infty} \frac{1}{\sqrt{4 \pi K(t-s)}} e^{-\left(x-x^{\prime}\right)^{2} /[4 K(t-s)]} h\left(x^{\prime}, s\right) d x^{\prime} d s .
\end{aligned}
$$
\]

Therefore we obtain

$$
u(x, t)=\int_{-\infty}^{\infty} G\left(x, x^{\prime} ; t\right) f\left(x^{\prime}\right) d x^{\prime}+\int_{0}^{t} \int_{-\infty}^{\infty} G\left(x, x^{\prime} ; t-s\right) h\left(x^{\prime}, s\right) d x^{\prime} d s
$$

Case $2(0<x<\infty)$

Recall that (5.5), $u_{t}=K u_{x x}(t>0, x \in(0, \infty))$ with the Dirichlet boundary condition $u(0, t)=0$ and initial condition $u(x, 0)=f(x)$, is solved as

$$
u(x, t)=\int_{0}^{\infty} G_{D}\left(x, x^{\prime} ; t\right) f\left(x^{\prime}\right) d x^{\prime}
$$

where

$$
G_{D}\left(x, x^{\prime} ; t\right)=G\left(x, x^{\prime} ; t\right)-G\left(x,-x^{\prime} ; t\right)
$$

and for the Neumann boundary condition $u_{x}(0, t)=0$ we have

$$
u(x, t)=\int_{0}^{\infty} G_{N}\left(x, x^{\prime} ; t\right) f\left(x^{\prime}\right) d x^{\prime}
$$

where

$$
G_{N}\left(x, x^{\prime} ; t\right)=G\left(x, x^{\prime} ; t\right)+G\left(x,-x^{\prime} ; t\right)
$$

Let us consider

$$
\left\{\begin{aligned}
u_{t}-K u_{x x}=h(x, t), & 0<t<T, \quad 0<x<\infty \\
u=0, & 0<t<T, \quad x=0 \\
u=0, & t=0, \quad 0<x<\infty
\end{aligned}\right.
$$

We extend h as

$$
h_{O}(x, t)=\left\{\begin{aligned}
h(x, t), & x>0 \\
0, & x=0 \\
-h(-x, t), & x<0
\end{aligned}\right.
$$

Then we have

$$
u(x, t)=\int_{0}^{t} \int_{-\infty}^{\infty} G\left(x, x^{\prime}, t-s\right) h_{O}\left(x^{\prime}, s\right) d x^{\prime} d s
$$

We obtain

$$
u(x, t)=\int_{0}^{t} \int_{0}^{\infty} G_{D}\left(x, x^{\prime}, t-s\right) h\left(x^{\prime}, s\right) d x^{\prime} d s
$$

Next we consider

$$
\left\{\begin{aligned}
u_{t}-K u_{x x}=h(x, t), & 0<t<T, \quad 0<x<\infty, \\
u=0, & 0<t<T, \quad x=0 \\
u=f(x), & t=0, \quad 0<x<\infty
\end{aligned}\right.
$$

The solution is obtained as

$$
u(x, t)=\int_{0}^{\infty} G_{D}\left(x, x^{\prime} ; t\right) f\left(x^{\prime}\right) d x^{\prime}+\int_{0}^{t} \int_{0}^{\infty} G_{D}\left(x, x^{\prime}, t-s\right) h\left(x^{\prime}, s\right) d x^{\prime} d s
$$

In the case of the Neumann boundary condition $u_{x}=0$, we obtain

$$
u(x, t)=\int_{0}^{\infty} G_{N}\left(x, x^{\prime} ; t\right) f\left(x^{\prime}\right) d x^{\prime}+\int_{0}^{t} \int_{0}^{\infty} G_{N}\left(x, x^{\prime}, t-s\right) h\left(x^{\prime}, s\right) d x^{\prime} d s
$$

Case $3(0<x<L)$

Let us solve

$$
\left\{\begin{aligned}
u_{t}-K u_{x x}=0, & 0<t<T, \quad 0<x<L, \\
u=0, & 0<t<T, \quad x=0, \\
u=0, & 0<t<T, \quad x=L, \\
u=f(x), & t=0, \quad 0<x<L
\end{aligned}\right.
$$

We have solved this equation using separation of variables, and obtained (cf., Chapter 2)

$$
\begin{equation*}
u(x, t)=\frac{2}{L} \sum_{n=1}^{\infty}\left[\int_{0}^{L} f\left(x^{\prime}\right) \sin \frac{n \pi x^{\prime}}{L} d x^{\prime}\right] \sin \frac{n \pi x}{L} e^{-(n \pi / L)^{2} K t} \tag{7.3}
\end{equation*}
$$

Therefore we can read off the Green's function $G_{L}\left(x, x^{\prime} ; t\right)$ as

$$
G_{L}\left(x, x^{\prime} ; t\right)=\frac{2}{L} \sum_{n=1}^{\infty} \sin \frac{n \pi x}{L} \sin \frac{n \pi x^{\prime}}{L} e^{-(n \pi / L)^{2} K t} .
$$

We will find another expression of $u(x, t)$ using the Fourier transform.
We extend $f(x)$ as an odd $2 L$-periodic function by setting

$$
f_{O}(x)=\left\{\begin{aligned}
f(x-2 m L), & 2 m L<x<(2 m+1) L \\
0, & x=2 m L, \quad(2 m+1) L, \quad(2 m+2) L \\
-f(-x+(2 m+2) L), & (2 m+1) L<x<(2 m+2) L
\end{aligned}\right.
$$

where $m=0, \pm 1, \pm 2, \ldots$. Note that $f_{O}(x+2 L)=f_{O}(x)$ for all x. Then we have
$u(x, t)=\int_{-\infty}^{\infty} G\left(x, x^{\prime} ; t\right) f_{O}\left(x^{\prime}\right) d x^{\prime}=\sum_{m=-\infty}^{\infty}\left\{\int_{2 m L}^{(2 m+1) L}+\int_{(2 m+1) L}^{(2 m+2) L}\right\} G\left(x, x^{\prime} ; t\right) f_{O}\left(x^{\prime}\right) d x^{\prime}$.
We obtain

$$
\begin{equation*}
u(x, t)=\int_{0}^{L} G_{L}\left(x, x^{\prime} ; t\right) f\left(x^{\prime}\right) d x^{\prime} \tag{7.4}
\end{equation*}
$$

where

$$
G_{L}\left(x, x^{\prime} ; t\right)=\sum_{m=-\infty}^{\infty}\left[G\left(x, x^{\prime}+2 m L ; t\right)-G\left(x,-x^{\prime}+(2 m+2) L ; t\right)\right]
$$

(7.4) is another expression of (7.3)

We can similarly solve

$$
\left\{\begin{aligned}
u_{t}-K u_{x x}=h(x, t), & 0<t<T, \quad 0<x<L \\
u=0, & 0<t<T, \quad x=0 \\
u=0, & 0<t<T, \quad x=L \\
u=f(x), & t=0, \quad 0<x<L
\end{aligned}\right.
$$

We extend $h(x, t)$ as an odd $2 L$-periodic function by setting

$$
h_{O}(x, t)=\left\{\begin{aligned}
h(x-2 m L, t), & 2 m L<x<(2 m+1) L, \\
0, & x=2 m L, \quad(2 m+1) L, \quad(2 m+2) L, \\
-h(-x+(2 m+2) L, t), & (2 m+1) L<x<(2 m+2) L
\end{aligned}\right.
$$

Note that $h_{O}(x+2 L, t)=h_{O}(x, t)$ for all x. Then we have

$$
u(x, t)=\int_{0}^{L} G_{L}\left(x, x^{\prime}, t\right) f\left(x^{\prime}\right) d x^{\prime}+\int_{0}^{t} \int_{0}^{L} G_{L}\left(x, x^{\prime}, t-s\right) h\left(x^{\prime}, s\right) d x^{\prime} d s
$$

One dimension ${ }^{2}$

Let us consider the following ordinary differential equation.

$$
\left\{\begin{aligned}
y^{\prime \prime}=-f, & 0<x<L, \\
y=0, & x=0, L,
\end{aligned}\right.
$$

where $f(x), 0<x<L$, is a piecewise smooth function.
We integrate both sides and obtain $y^{\prime}(x)=y^{\prime}(0)-\int_{0}^{x} f\left(x^{\prime}\right) d x^{\prime}$. By integrating one more time, we obtain

$$
\begin{aligned}
y(x) & =y(0)+y^{\prime}(0) x-\int_{0}^{x} \int_{0}^{x^{\prime}} f\left(x^{\prime \prime}\right) d x^{\prime \prime} d x^{\prime} \\
& =y^{\prime}(0) x-\int_{0}^{x} \int_{x^{\prime \prime}}^{x} f\left(x^{\prime \prime}\right) d x^{\prime} d x^{\prime \prime} \\
& =y^{\prime}(0) x-\int_{0}^{x}\left(x-x^{\prime \prime}\right) f\left(x^{\prime \prime}\right) d x^{\prime \prime}
\end{aligned}
$$

where we used $\int_{0}^{x} d x^{\prime} \int_{0}^{x^{\prime}} d x^{\prime \prime} \cdots=\int_{0}^{x} d x^{\prime \prime} \int_{x^{\prime \prime}}^{x} d x^{\prime} \ldots$. We note that

$$
y(L)=y^{\prime}(0) L-\int_{0}^{L}\left(L-x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}=0
$$

Hence,

$$
\begin{aligned}
y(x) & =\frac{x}{L} \int_{0}^{L}\left(L-x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}-\int_{0}^{x}\left(x-x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime} \\
& =\int_{0}^{x}\left[\frac{x}{L}\left(L-x^{\prime}\right)-\left(x-x^{\prime}\right)\right] f\left(x^{\prime}\right) d x^{\prime}+\frac{x}{L} \int_{x}^{L}\left(L-x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime} \\
& =\int_{0}^{x} \frac{x^{\prime}}{L}(L-x) f\left(x^{\prime}\right) d x^{\prime}+\int_{x}^{L} \frac{x}{L}\left(L-x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime} .
\end{aligned}
$$

Therefore we can write

$$
\begin{equation*}
y(x)=\int_{0}^{L} G\left(x, x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime} \tag{7.5}
\end{equation*}
$$

where

$$
G\left(x, x^{\prime}\right)= \begin{cases}\frac{x^{\prime}(L-x)}{L}, & 0 \leq x^{\prime} \leq x \tag{7.6}\\ \frac{x\left(L-x^{\prime}\right)}{L}, & x \leq x^{\prime} \leq L\end{cases}
$$

We note that the Green's function $G\left(x, x^{\prime}\right)$ depends only on the equation and boundary conditions, and is independent of $f(x)$.

[^2]We note that the Green's function $G\left(x, x^{\prime}\right)$ is the solution to

$$
\left\{\begin{align*}
\partial_{x}^{2} G=-\delta\left(x-x^{\prime}\right), & 0<x<L, \tag{7.7}\\
G=0, & x=0, L .
\end{align*}\right.
$$

Let us first confirm that if $G\left(x, x^{\prime}\right)$ is the solution to (7.7), then $y(x)$ is given by (7.5). From (7.5) we have

$$
y^{\prime \prime}(x)=\int_{0}^{L} \partial_{x}^{2} G\left(x, x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}=-\int_{0}^{L} \delta\left(x-x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}=-f(x)
$$

Moreover $y(0)=\int_{0}^{L} G\left(0, x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}=\int_{0}^{L}(0) f\left(x^{\prime}\right) d x^{\prime}=0$ and similarly $y(L)=0$.
Let us integrate the equation from $x=x^{\prime}-0$ to $x^{\prime}+0$. We have

$$
G_{x}\left(x^{\prime}+0, x^{\prime}\right)-G_{x}\left(x^{\prime}-0, x^{\prime}\right)=-\int_{x^{\prime}-0}^{x^{\prime}+0} \delta\left(x-x^{\prime}\right) d x^{\prime}=-1
$$

Thus G_{x} has a jump at $x=x^{\prime}$. If we integrate (7.7) from 0 to x, we obtain

$$
\partial_{x} G\left(x, x^{\prime}\right)=G_{x}\left(0, x^{\prime}\right)-\theta\left(x-x^{\prime}\right)
$$

where $\theta\left(x-x^{\prime}\right)$ is the step function: $\theta(x)=1$ for $x>0,=1 / 2$ for $x=0$, and $=0$ for $x<0$. By integrating the above equation from $x=x^{\prime}-0$ to $x^{\prime}+0$, we obtain

$$
G\left(x^{\prime}+0, x^{\prime}\right)-G\left(x^{\prime}-0, x^{\prime}\right)=\int_{x^{\prime}-0}^{x^{\prime}+0} G_{x}\left(0, x^{\prime}\right) d x-\int_{x^{\prime}-0}^{x^{\prime}+0} \theta\left(x-x^{\prime}\right) d x=0
$$

Hence G is continuous at $x=x^{\prime}$.
Remark 1. The Green's function (7.2) is the solution to

$$
\left\{\begin{aligned}
& G_{t}=K G_{x x}, t>0, \\
& G \in(-\infty, \infty) \\
& G=\delta\left(x-x^{\prime}\right), t=0, \\
& x, x^{\prime} \in(-\infty, \infty)
\end{aligned}\right.
$$

Note that $\delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \mu x} d \mu$.
We can solve (7.7) and get (7.6) just like we derived (7.5). Here let us solve (7.7) by using the Sturm-Louville eigenproblem.

Let us consider

$$
\phi_{n}^{\prime \prime}(x)+\lambda_{n} \phi(x)=0, \quad \phi_{n}(0)=\phi_{n}(L)=0
$$

We obtain

$$
\phi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}, \quad \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad n=1,2, \ldots
$$

We have almost always chosen the coefficient in ϕ_{n} to be 1 , but here we choose $\sqrt{2 / L}$ noticing that $\int_{0}^{L} \sin (n \pi x / L)^{2} d x=L / 2$. Thus in this case

$$
\int_{0}^{L} \phi_{n}(x)^{2} d x=1
$$

Or we can write

$$
\left\langle\phi_{n}, \phi_{m}\right\rangle=\delta_{n m}, \quad\left\|\phi_{n}\right\|=1
$$

We expanded the functions $v(z, t), R(z, t)$, and $F(z)$ with the Sturm-Liouville eigenfunctions when we solved (2.19) in Chapter 2. Similarly we write the Green's function as

$$
G\left(x, x^{\prime}\right)=\sum_{n=1}^{\infty} A_{n} \phi_{n}(x)
$$

We have

$$
G_{x x}\left(x, x^{\prime}\right)=\sum_{n=1}^{\infty} A_{n} \phi_{n}^{\prime \prime}(x)=-\sum_{n=1}^{\infty} A_{n} \lambda_{n} \phi_{n}(x)=-\delta\left(x-x^{\prime}\right)
$$

We multiply $\phi_{m}(x)$ and integrate both sides.

$$
\begin{aligned}
& \int_{0}^{L} \sum_{n=1}^{\infty} A_{n} \lambda_{n} \phi_{n}(x) \phi_{m}(x) d x=\int_{0}^{L} \delta\left(x-x^{\prime}\right) \phi_{m}(x) d x \\
& \text { LHS }=\sum_{n=1}^{\infty} A_{n} \lambda_{n} \delta_{n m}=A_{m} \lambda_{m}, \quad \text { RHS }=\phi_{m}\left(x^{\prime}\right)
\end{aligned}
$$

Hence,

$$
A_{n}=\frac{\phi_{n}\left(x^{\prime}\right)}{\lambda_{n}}
$$

We obtain

$$
\begin{equation*}
G\left(x, x^{\prime}\right)=\sum_{n=1}^{\infty} \frac{\phi_{n}(x) \phi_{n}\left(x^{\prime}\right)}{\lambda_{n}} \tag{7.8}
\end{equation*}
$$

This (7.8) is another expression of (7.6). The series in (7.8) converges uniformly for $x, x^{\prime} \in[0, L]$.

The Green's function $G\left(x, x^{\prime}\right)$ has the following properties.

1. $G_{x x}=0$ except when $x=x^{\prime}$ (homogeneous equation).
2. $G\left(0, x^{\prime}\right)=0$ and $G\left(L, x^{\prime}\right)=0$ (boundary conditions).
3. $G\left(x^{\prime}+0, x^{\prime}\right)-G\left(x^{\prime}-0, x^{\prime}\right)=0$ (continuity).
4. $G_{x}\left(x^{\prime}+0, x^{\prime}\right)-G_{x}\left(x^{\prime}-0, x^{\prime}\right)=-1$ (jump).
5. $G\left(x, x^{\prime}\right)=G\left(x^{\prime}, x\right)$ (reciprocity).

The Green's function $G\left(x, x^{\prime}\right)$ is continuous but G_{x} has a jump at $x=x^{\prime}$.

The conditions 1 through 4 uniquely determine $G\left(x, x^{\prime}\right)$. Indeed, by Condition 1 we can write $G\left(x, x^{\prime}\right)=A x+B$ for $x>x^{\prime}$ and $C x+D$ for $x<x^{\prime}$. Using Condition 2 we have $G\left(x, x^{\prime}\right)=A(x-L)$ for $x>x^{\prime}$ and $C x$ for $x<x^{\prime}$. Condition 3 implies $A\left(x^{\prime}-L\right)=C x^{\prime}$, and Condition 4 implies $A-C=-1$. Thus we uniquely obtain (7.6).

Condition 5 is called the reciprocity relation. It means that G at x for the source at x^{\prime} is the same as G at x^{\prime} for the source at x.

Theorem 1 (Reciprocity). We consider the Green's function $G\left(x, x^{\prime}\right)$ in (7.7). For $x, x^{\prime} \in[0, L]$, we have

$$
G\left(x, x^{\prime}\right)=G\left(x^{\prime}, x\right) .
$$

Proof. We consider two sources:

$$
G_{x x}\left(x, x_{1}\right)=-\delta\left(x-x_{1}\right), \quad G_{x x}\left(x, x_{2}\right)=-\delta\left(x-x_{2}\right)
$$

where $x, x_{1}, x_{2} \in[0, L]$, and $G=0$ for $x=0, L$. We multiply the first equation by $G\left(x, x_{2}\right)$ and the second equation by $G\left(x, x_{1}\right)$ and integrate two equations:

$$
\begin{aligned}
\int_{0}^{L} G\left(x, x_{2}\right) G_{x x}\left(x, x_{1}\right) d x & =-\int_{0}^{L} G\left(x, x_{2}\right) \delta\left(x-x_{1}\right) d x \\
\int_{0}^{L} G\left(x, x_{1}\right) G_{x x}\left(x, x_{2}\right) d x & =-\int_{0}^{L} G\left(x, x_{1}\right) \delta\left(x-x_{2}\right) d x .
\end{aligned}
$$

We note that

$$
\begin{aligned}
\int_{0}^{L} G\left(x, x_{2}\right) G_{x x}\left(x, x_{1}\right) d x & =\left.G\left(x, x_{2}\right) G_{x}\left(x, x_{1}\right)\right|_{0} ^{L}-\int_{0}^{L} G_{x}\left(x, x_{2}\right) G_{x}\left(x, x_{1}\right) d x \\
& =-\int_{0}^{L} G_{x}\left(x, x_{2}\right) G_{x}\left(x, x_{1}\right) d x \\
\int_{0}^{L} G\left(x, x_{1}\right) G_{x x}\left(x, x_{2}\right) d x & =\left.G\left(x, x_{1}\right) G_{x}\left(x, x_{2}\right)\right|_{0} ^{L}-\int_{0}^{L} G_{x}\left(x, x_{1}\right) G_{x}\left(x, x_{2}\right) d x \\
& =-\int_{0}^{L} G_{x}\left(x, x_{1}\right) G_{x}\left(x, x_{2}\right) d x
\end{aligned}
$$

Therefore we obtain

$$
\int_{0}^{L} G\left(x, x_{2}\right) \delta\left(x-x_{1}\right) d x=\int_{0}^{L} G\left(x, x_{1}\right) \delta\left(x-x_{2}\right) d x
$$

This implies $G\left(x_{1}, x_{2}\right)=G\left(x_{2}, x_{1}\right)$ and completes the proof.

[^0]: Winter 2014 Math 454 Sec 2
 Boundary Value Problems for Partial Differential Equations
 Manabu Machida (University of Michigan)

[^1]: ${ }^{1}$ This section corresponds to $\S 8.4$ of the textbook.

[^2]: ${ }^{2}$ This section corresponds to $\S 8.1$ of the textbook.

