Chapter 6

Method of characteristics

First order PDEs

First-order partial differential equations are generally written as

$$
\left\{\begin{aligned}
a(x, t) u_{t}+b(x, t) u_{x}+c(x, t) u=0, & -\infty<x<\infty, \quad 0<t<\infty, \\
u(x, t)=f(x), & -\infty<x<\infty, \quad t=0 .
\end{aligned}\right.
$$

For simplicity we consider the following problem.

$$
\left\{\begin{aligned}
u_{t}+v u_{x}+\alpha u=0, & -\infty<x<\infty, \quad 0<t<\infty, \\
u=\sin (x), & -\infty<x<\infty, \quad t=0,
\end{aligned}\right.
$$

where v, α are positive constants. We introduce new coordinates $s(x, t), \tau(x, t)$. They are introduced as

$$
\frac{d t}{d s}=1, \quad \frac{d x}{d s}=v, \quad t(s=0)=0, \quad x(s=0)=\tau
$$

That is,

$$
t=s, \quad x=v s+\tau
$$

We have

$$
\frac{d u}{d s}=\frac{\partial u}{\partial t} \frac{d t}{d s}+\frac{\partial u}{\partial x} \frac{d x}{d s}=u_{t}+v u_{x}
$$

We now have an ODE for $u(x, t)=u(s)$:

$$
\left\{\begin{aligned}
\frac{d u}{d s}+\alpha u=0, & s>0 \\
u=\sin (\tau), & s=0
\end{aligned}\right.
$$

We obtain

$$
u(s)=\sin (\tau) e^{-\alpha s}
$$

Since $s=t, \tau=x-v t$, we finally obtain

Winter 2014 Math 454 Sec 2
Boundary Value Problems for Partial Differential Equations
Manabu Machida (University of Michigan)

$$
u(x, t)=\sin (x-v t) e^{-\alpha t}
$$

As we saw, τ is associated with the initial condition. If we trace a point $x(s, \tau)$ in the $x t$-plane, the point propagates along a line (curve), which is called a characteristic. Then $s \in(0, \infty)$ is a parameter along the characteristic.

Wave equation revisited

Let's attack second-order PDEs using the idea of characteristics. Consider

$$
\begin{equation*}
A u_{t t}+B u_{t x}+C u_{x x}=0 \tag{6.1}
\end{equation*}
$$

with constants A, B, C. We introduce

$$
\tau_{1}=x-\alpha_{1} t, \quad \tau_{2}=x-\alpha_{2} t
$$

Then,

$$
\begin{aligned}
& u_{t}=\frac{\partial u}{\partial \tau_{1}} \frac{\partial \tau_{1}}{\partial t}+\frac{\partial u}{\partial \tau_{2}} \frac{\partial \tau_{2}}{\partial t}=-\alpha_{1} u_{\tau_{1}}-\alpha_{2} u_{\tau_{2}} \\
& u_{x}=u_{\tau_{1}}+u_{\tau_{2}}
\end{aligned}
$$

With these τ_{1} and $\tau_{2},(6.1)$ is written as

$$
\left(A \alpha_{1}^{2}-B \alpha_{1}+C\right) u_{\tau_{1} \tau_{1}}+\left(A \alpha_{2}^{2}-B \alpha_{2}+C\right) u_{\tau_{2} \tau_{2}}+2\left(\alpha_{1} \alpha_{2} A-\frac{\alpha_{1}+\alpha_{2}}{2} B+C\right) u_{\tau_{1} \tau_{2}}=0
$$

Note that $A \alpha^{2}-B \alpha+C=0$ is solved as

$$
\alpha=\frac{B \pm \sqrt{B^{2}-4 A C}}{2 A} .
$$

If $B^{2}-A C=0$ (parabolic) or $B^{2}-A C<0$ (elliptic), then we have one real solution or two complex solutions and we cannot simplify (6.1). If $B^{2}-A C>0$ (hyperbolic), we have two real solutions α_{1} and α_{2}. By choosing $\alpha_{1,2}=\left(B \pm \sqrt{B^{2}-4 A C}\right) / 2 A$, (6.1) becomes

$$
\frac{4 A C-B^{2}}{A} u_{\tau_{1} \tau_{2}}=0
$$

That is,

$$
\begin{equation*}
u_{\tau_{1} \tau_{2}}=0 \quad \Leftrightarrow \quad u=g_{1}\left(\tau_{1}\right)+g_{2}\left(\tau_{2}\right) \tag{6.2}
\end{equation*}
$$

where g_{1}, g_{2} are some functions.

We obtain

$$
u(x, t)=g_{1}\left(x-\alpha_{1} t\right)+g_{2}\left(x-\alpha_{2} t\right)
$$

We have seen this form in (5.10). In the $x t$-plane, $x-\alpha_{1} t=\tau_{1}$ and $x-\alpha_{2} t=\tau_{2}$ are called characteristics.

Note that $\frac{\partial g_{1}}{\partial \tau_{2}}=0, \frac{\partial g_{2}}{\partial \tau_{1}}=0$ from (6.2). If we view g_{1} as a function of x, t, we have

$$
\frac{\partial g_{1}}{\partial \tau_{2}}=\frac{\partial g_{1}}{\partial t} \frac{\partial t}{\partial \tau_{2}}+\frac{\partial g_{1}}{\partial x} \frac{\partial x}{\partial \tau_{1}}=\frac{1}{\alpha_{1}-\alpha_{2}}\left(\frac{\partial g_{1}}{\partial t}+\alpha_{1} \frac{\partial g_{1}}{\partial x}\right)=0
$$

where we used

$$
t=\frac{\tau_{1}-\tau_{2}}{\alpha_{2}-\alpha_{1}}, \quad x=\frac{\alpha_{2} \tau_{1}-\alpha_{1} \tau_{2}}{\alpha_{2}-\alpha_{1}}
$$

Similarly we can compute $\partial g_{2} / \partial \tau_{2}$. Hence we have

$$
g_{1 t}+\alpha_{1} g_{1 x}=0, \quad g_{2 t}+\alpha_{2} g_{2 x}=0 .
$$

Thus a second-order hyperbolic PDE is reduced to two first-order PDEs.
Example 1.

$$
\begin{equation*}
u_{t t}=c^{2} u_{z z} \tag{6.3}
\end{equation*}
$$

In this case, $A=1, B=0$, and $C=-c^{2}$. We obtain $\alpha_{1,2}= \pm c$. (6.3) reduces to $g_{1 t}+c g_{1 z}=0$ and $g_{2 t}-c g_{2 z}=0$. We obtain

$$
u(z, t)=g_{1}(z-c t)+g_{2}(z+c t),
$$

where g_{1}, g_{2} are determined by initial conditions.

