Chapter 5
Fourier transforms

Basic properties of the Fourier transform !

Let us recall the complex form of Fourier series in Chapter 1. A function f(x),
—L < x < L,is expressed as

oo ) 1 L )
_ inmx/L _ —inmx/L
f(x) E o€ ;O =5 [Lf(x)e dx.

N=—o0

We define
nmw T
.un:T (n:()a:tla:tza)a A,un:,u)H»l*IJn:Z-
We obtain m
F) =Y Je(u)e A,

n—=—oo

where

1L .
) = E[Lf(x)e_”“‘dx.

Now we let L go to infinity, L — oo,
=z ilx 7 1 ~ —ilx
0= [ Faewdn,  Fa = [ feex

The above f(u) is called the Fourier transform of f(x).
Let us also recall Parseval’s theorem in complex form:

L oo
2 o 2
/Lf(x) dx=2L"Y |y

- n=-—oo

We note that
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where we used orthogonality relations f_LL elm=max/Lgyx — 2L§,,,. Thus Parseval’s
theorem for Fourier transforms is obtained as

o [ separ= [ 1fPan.

Gaussian integral

Consider a Gaussian f(x) = e b7 4> 0.

oo oo 00 oo 2T poo
/ f(x)dx:/ e“xzdx:\// / e“xze“yzdxde\// / e~’pdpd

This is the famous Gaussian integral. The result [*_ e~?(~ b gy = V/T/a is true
even when b € C.
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Example 1. We obtain the Fourier transform of the Gaussian f(x) = ~—

(m is the mean and o is the standard deviation) as
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T = 2m/2T/ { sor+ (g x| o
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Fourier cosine and sine transforms

Let f(x) be defined for x > 0. We extend f as an even function fg (fg(—x) = fe(x))
or as an odd function fp (fo(—x) = —fo(x)).

10 = [ Fweos(udn, Jiw) = = [ reocos(unlar,
1@ = [ Rwsinuidn, Fw) =2 [ 7@ singuna

The delta function

Let us consider the Fourier transform of 1, i.e., f(x) = 1. Interestingly,

f<u>:6<u>:{°;’ e

This 6(u) is called Dirac’s delta function. Indeed §(u) is a generalized func-
tion. We can consider the delta function through Gaussian. We write f(x) = 1 =

. 42 2
limg_se e /29" Then,

rd . 1 ~ —x%/20% —iux
fu) ;@02”[&6 e "Mdx
lim / T e e 2y
00 2T /oo

2

= lim ;e 2(1/0)2
o= \/21(1/0)

The right-hand side is an extremely sharp Gaussian.

For some function g(x),

| sst—a)dx=ga).

This property is compared to Y, & Oum = &n With Kronecker’s delta J,,,,.
Furthermore we have

/_Zg(x)S(bx—a)dx: /_Zg(x)ﬁé (x_ %) dy — g(rb/|b)’

where a,b are constants. This implies §(—x) = §(x).
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The heat equation for an infinite rod >

We will solve the following heat equation.

ur = Ky, t>0, —oo<x< oo, 5.1)

x,0) = f(x), —o0 < x < oo,

Let us use the Fourier transform.

oo . ] B .
u(X,t):/ ﬁ(u,t)eluxd‘u, ﬁ(,u?t):ﬁ/ M(xJ)e’”“”‘dx,

We note that

o

weon) = [ a(wneran, o) = [ atwn-u)ena
Hence,

/ ity (1, 1)e™ dy = K [ (1) (—p?)edp.

We multiply e~*** and integrate both sides over x:

/ dxe ik / (1, 1) dy = K / dxe ™ / (1) (— ) dp.
Since [ e/ t=K)¥dx = 27181 — k), we obtain

ik, 1) + k*Kii(k,t) = 0. (5.2)

From the initial condition f(x) = [_ii(1,0)e**du, we have

1 /e . 1 = e 4
E/ f(x)e_lkxdx:ﬂ/ dxe_lkx/ a(w,0)edu.

Thus 3
ii(k,0) = (k). (5.3)
By solving (5.2) and (5.3), we obtain
i(k,1) = f(k)e K

We obtain .
u(x,t):/ f(u)e*ﬂzkteiuxd“.

Furthermore,

2 This section corresponds to §5.2 of the textbook.
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u(x,t) = %/:of(x’) [/ie—iﬂx'eiuxe—uzmdu} d
= L/w f() /m exp | —Kt | u— ix—=x) ? —(= /4Kt g |
“og ) X)) exp M e w|dx.

2Kt
Thus we obtain

1
ux,t) =
(1) VATKt

/ T o AR 1 g (5.4)

o—(=2)2/4

Kt .
Jinkr ' is called the Gauss-Weierstrass kernel, the heat kernel, the

fundamental solution to the heat equation, or the Green’s function of the heat equa-
tion.

The function

The method of images

We will consider the heat equation in the half space.

Dirichlet Boundary Condition

u; = Kutyy, >0, 0<x<oo,
u(0,1) =0, t>0, (5.5)
u(x,0) = f(x), 0<x<oo.
We extend f(x) as

f(x), x>0,
folx) = 0, x=0,
—f(—x), x<0.
We have
{ u; = Kutyy, t>0, —oco<x< oo 5.6)
u(x,0) = fo(x), —o0 < x < oo,

Note that the heat equation is invariant under the change x — —x, and u(x,t)
and —u(—x,t) satisfy the same equation and the same initial condition. Hence
—u(—x,1) = u(x,1). In particular —u(0,7) = u(0,¢), which implies u(0,7) = 0. Thus
we see that the right half (0 < x < o) of (5.6) is equivalent to (5.5).

For fo(x) defined on —oo < x < o0, we have
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1 ~ N ,—(x—x')? /4Kt 5 7 P /4K N gt
u(x,t) = T [wfo(x)e dx' = / —|—/ ik —————fo(x")dx'.

Therefore,

f(x)ax'.

o e—(x—x’)2/4Kt _ e—(x+x')2/4Kt
u(x,t) :/
0 4mKt

Neumann Boundary Condition

u; = Kuiyy, >0, 0<x<oo,
ux(0,¢) =0, t>0,
u(x,0) = f(x), 0<x<oo.
We extend f(x) as
F(x), x>0,

fE(x)_{f(—x), x <0.

uy = Ky, t>0, —oo<x< oo,
(x,0) = fe(x), —o0 < x < o0,

We have

For fg(x) defined on —eo < x < oo, we have

)2 /4Kt
—(x—x')? /4Kt _ / /
urt) = m/ felx ' = (/ */) ki

Thus,
~X')2/AKt | o= (xa!)? /4K

oo o= (x=x') ,
1) = dx'.
u(x,1) ./o 4mKt J)dx

d’Alembert’s formula 3

Let us consider the following wave equation.

Uy = c2uxx, t>0, —oco<x< oo,
u(x,0) = fi(x), —oo < x < oo, (5.7)
u(x,0) = fo(x),  —oo<x <o

We use the Fourier transform:

3 This section corresponds to §5.3 of the textbook.
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u(x,1) :/jo a(w, e du, ia(u,r) = L/w w(x,1)e iy,
:/ " Awemdu, filp / e My,
/ Pwetdu,  fu / e~ixgy.

The wave equation reduces to

ﬁ[t‘i'cz‘lizﬁ: 0, > O, —o00 < IJ < o,
i(n,0) = fi(u),  —eo<p <eoo,
i (1,0) = fo(n),  —eo<p <oo

Using coefficients A(t), B(1), we obtain i as
ia(p,t) = A(p)cos(pct) +B(u) sin(uet).

Using the initial conditions we find

Therefore,

u(x,t) = /:o [fl(u)cos(uct) +f2(u)smgicr)} o

This can be written as

et (x+ct) _|_elp.(x ct) eitxtet) _ pipt(x—ct)
uer) = [ filu : du+ [~ fu a—
X+ct
/ fl 1 (x+cr) +el/.L(x Ll)i| du+ — / f2 / ez/,lydydu.
2 2c x—ct

Thus we obtain d’ Alembert’s formula

1 1 X+-ct
uet) = 3 Uit a) +filc—al+ o [ p0)My (58)

We note that d’ Alembert’s formula can be expressed as

u(xf) = /:c 5(x—|—ct—x)—;5(x—ct—x)fl(x,)dx

N /°° sgn(x+ct—x/)4_csgn(x_d_X/>f2(x/)dx’. (5.9)
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Here J(x) is the Dirac delta function, and the sign function is defined as sgn(x) = 1
x>0),=0x=0),=—1(x<0). We can write u as

u(x,t) =gi1(x—ct)+ga(x+ct), (5.10)

where

ab) = [ [P A - 0= ) av.

2 4c
e = [ [0+ B0 v

We can readily check that u of the form (5.10) satisfies the wave equation.

Example 2. Let us solve the following wave equation.

U = Uy, t>07 —o0 L X < oo,
u(x,0) =0, —o0 < x < oo,
u(x,0) = x, —oo < x < oo,

The solution is
1 X+t
u(x,t) = 7/ ydy = xt.
2 Jx—t

The heat equation and wave equation

The heat equation is parabolic and the wave equation is hyperbolic (Chapter 1). Let
us compare the solutions to these equations.
We set f(x) = ¢~ in the heat equation (5.1):

u; = Kutyy, t>0, —oco<x< oo,
(.

2
x,0)=e*, — o0 < x < oo,

By (5.4), the solution is obtained as

1 e /N2 2 1 2
_ —(x—x')* /4Kt ,—x I —x=/(1+4Kt)
u(x,t) = e et dx = e . 5.11
(1) VAnKt ./,m V144Kt ¢ )
Next we set fi(x) = e, f2(x) =0 in the wave equation (5.7):
Uy = czuxx, t>0, —oo<x< oo,
u(x70):e7x2, — o0 < x < oo,

u;(x,0) =0, —o0 < x < oo,
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According to (5.8) or (5.9), we obtain
1
u(x,r) = 5 o bxer)? +e_(x_“)2} . (5.12)

We note that the Gaussian in (5.11) spreads and decays with time while Gaussians
in (5.12) propagate preserving their shapes. See Fig. 5.1.
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Fig. 5.1 The solution to the heat equation with K = 1 (5.11) and the solution to the wave equation
with ¢ =1 (5.12) are compared att =0, 1,2,3,4,5.



