Chapter 4
PDE:s in spherical coordinates

Spherically symmetric solutions !

Using spherical coordinates, we have
x=rsinBcos¢p, y=rsinOsing, z=rcosH, 4.1)

where r >0,0< 0 <m,and —w < ¢ <.
Let us consider the Laplacian. We recall that in cylindrical coordinates (or polar
coordinates) we have

X=pcoso, y:PSin(Pa
and

1 1
Ux Uy = Upp + —Up + —FlUgg.
p " p?
In spherical coordinates we have
z=rcos0, p = rsinf.

We can then read off | |
Uzz +Upp = Upr + ;ur + rju99~

Hence we obtain

1 1 1 1
Uy + Uyy + Uzz = Upp + ;u,—i— r—zugg + Bup + ?"‘W‘

/ d

N dtan® d6 1 1 d6 1 N 90 _ cosb
de dp z cos20 dp  rcosB oap  r

Therefore we obtain

We note that

tan 0 =

P
z
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u Uy Uz = U u u " u Upg-
XX yy 2z rr r r 2 66 2sin O 0 2 sin2 0 (10}

The Laplacian is obtained as

Au=Viu= Uy + Uyy + Uz

_ 19,
= Rl

1

29 Ugpgp-

sinBQug) + ——
r2 sin

)+
r2sin 6 90

We can also derive the Laplacian directly without using cylindrical coordinates.
For u,, we differentiate (4.1) with respect to x.

1= ﬁsin9(:05(p+a—ercosecos(pfa—q)rsinesin(p, 4.2)
dx dx dx
0= ﬁsinesin(p—i—a—ercosesin(p—i—a—q)rsinecos% 4.3)
dx dx dx
Ozgcosﬂ—g—zrsine. 4.4)
We obtain
ar . . oo
i sinfcos@ <« (4.2) xsinBcos@+ (4.3) xsinBsing + (4.4) x cos O,
d 1
a—i = ;cos@cos(p <  (4.2)xcosOcos@+ (4.3) x cosOsing — (4.4) xsin 6,
dp  —sing

%" Tsme € (4.2) x (—1)sinOsin @ + (4.3) x sin O cos @.

Thus we have

_Judr 0udb  dude
YT rox T 90 9x | ¢ ox

= sin 6 cos @—&-lcosecos @_ﬂ@
B (P(?r r (P(?G rsin® oo’

and u,, = %”; % + %’3 %—i + %‘g ‘;—f We can similarly calculate u,, and ., and obtain
Uy + Utyy + uz,. However, this requires a lot more lengthy calculations even though

actually it is doable.

Example 1. The temperature of the earth can be formulated as

u,:KVzu, —o<t<o, 0<r<a,
u(r,0,9,1) =, —o<Lt<oo, r=a,

where a is the radius of the earth. Taking into account the spherical symmetry, we
look for the solution in the form u = u(r,7). Then VZu = u,, + %u,. Define
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w(rt) = ru(nt).

The new function satisfies

wy = KWy, —o <o, 0<r<a,
w(a,t) = ae', —00 <t < oo,
w(0,¢) =0, —o0 <t < oo,

By assuming w(r,t) = ¢/® ", we obtain y = +c(1 +1i), where ¢ = \/®/2K. Hence,

c(1+i)r _ ,—c(14i)r
u(rt) = Leion £ ¢ .
’ r ec(1+i)a _ p—c(1+i)a

Legendre polynomials >

Let us begin with
0"(6)+cot8 O’ (0)+ud(6) =0.

By writing s = cos 6, y(s) = ©(0), we have the Legendre equation (recall Example
9 in Chapter 2)

dy

d
(1=57)y" =25y + 1y = — [(1 —52)ds

=0.
4 [y
Suppose y(s) = Yoy a,s” be a solution. Then we obtain

nn+1)—p
= - 7 2012~~-.
an42 (n—|—2)(n+1)an7 n s Ly 4

If u is of the form k(k+1) (k=0,1,2,---), then y(s) is a polynomial of degree k.
Otherwise the series for y diverges. For given k, we have

(2k)! a; =0, keven,
4o =0, kodd.

The value of ay, is determined so that y(1) = 1. Therefore the solution to
(1—5%)y" =25y +k(k+1)y=0

is a polynomial of degree %, i.e.,

k
y(s) = Pe(s) = Zbans".

2 This section corresponds to §4.2 of the textbook.
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This polynomial P (s) is the Legendre polynomial of degree k. We see that P(s) is
even for k=0,2,4,---, and odd for k = 1,3,5,---.

Since Py (s) are eigenfunctions of a Sturm-Liouville eigenvalue problem, they are
orthogonal to each other:

1 T
/ P(s)Py(s)ds = / P,(cos )P, (cos)sin0d0 =0, n#n'.
=il 0

Let us expand the polynomial (d/ds)*(s*> — 1)¥ with Legendre polynomials.

Using the above orthogonality relations, we obtain ¢; = 0 for j < k and ¢, = 2Kk!.
Thus, we obtain Rodrigues’ formula:

AS) = (js)k@z G

Using Rodrigues’ formula, we find

.] 2
Pi(s)%ds = ——.
./,1 k() ds = 57

The Legendre polynomials satisfy the following three-term recurrence rela-
tion.

nPy(s) = (2n—1)sPy_1(s) — (n—1)P—2(s) n=2,3,---,
Py(s)=1, Pi(s)=s.

We have
1
Py(s)=1, Pi(s)=s, P(s)== (3s2— 1),....

2

These Legendre polynomials are plotted in Fig. 4.1.
We consider the Legendre polynomial expansions. Consider the expansion of a
function f(s) in a series of Legendre polynomials.

fls)= iAkPk(s), —1<s<1.
k=0

Then we have
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Fig. 4.1 Legendre polynomials Py(s), Pi(s), and P> (s) are plotted.

24;

/ 76) ds_/ ZA"Pk T2t

Therefore we obtain A; = [(2j+1)/2] f_ll F(s)P;(s)ds.

Theorem 1. Ler f(s), —1 < s < 1, be a piecewise smooth function. Let
2k+1 1
Ak:T+/ f(S)Pk(s)dsv k:071727"'
=il

Then 1
ZAkPk :E f(s+0)+f(s—0)], —-lI<s<lI.

At s =1 (s = —1), the series converges to f(1—0) (f(—1+0)).

Example 2. Let us find the expansion of the function f(s) = I in a series of Legendre
polynomials. If we write 1 = Y7, AxPi(s), we obtain
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2k+1 rl 2k+1 rl
Ap = T+ / Pe(s)ds — T+ / Po(s)Pe(s)ds = 8.
~1 ~1

Therefore, 1 = Y7 (AkPi(s) = Po(s) = L.

On the interval 0 < s < 1, we can define an odd function or even function by
extending f(s) and consider the expansion on (—1, 1) just like Fourier sine (cosine)
series.

Example 3. Consider f(s) = 1,0 < s < 1, in aseries of the form Y, A2y+1Poy11(s).
We define fo(s) =1(0<s<1),—1(—1<s<0),and 0 (s = 0). Then

fo(s) =Y AvPi(s) = Y Asn1Pansi(s).
i=0 n=0
We have

(4n + 3)PZIn-'rl (0)
(2n+1)2n+2)"

an+3 ! !
A1 = ) / lfO(S)P2n+1(S)dS = (4n+3)/0 Pzn+1(s)ds =

s

where we used the Legendre equation % [(1 —s?) d}:’j@)} +k(k+1)Pc(s) =0.

Associated Legendre polynomials

More generally we have

mZ
0"(0)+cotO’'(0) + (k(k+ 1)— Sin29> 0(6)=0.

By using s = cos 6 and y(s) = ©(6), the above equation becomes

2
m
(1—s2)y" =25y + (k(k+ 1)— : 2) y=0.
This is the associated Legendre equation (recall Example 9 in Chapter 2). There-

fore y(s) = P m(s) or @(6) = P ,,(cos 0). The associated Legendre polynomial of
degree k and order m is obtained as

d m
Pem(s) = (1=5*)"" (d) Pis),
where k=0,1,2,---,m=0,1,--- ,k,and s € [— 1, 1]. We have

Pio(s)=Pi(s), Pri(s)=V1=5% Pools)=Pls), Pri(s)=3sV1—s% Pa(s)=3(1 —5?).

These associated Legendre polynomials are shown in Fig. 4.2. We also note that



4 PDEs in spherical coordinates 7

ot
/ Pum(s)By m(s)ds =0, n#n,
-1 ’

1  (n+m)! 2
/;ﬂm@yw_fn—mﬂ%+l'
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Fig. 4.2 (Left) associated Legendre polynomials P o(s), Py 1 (s). (Right) associated Legendre poly-
nomials P o(s), P21 (s), and P5»(s) are plotted.

Laplace’s equation in spherical coordinates >

Let us solve Laplace’s equation with axial symmetry.
Example 4. Let us solve the following problem.
Viu=0, 0<r<a, 0<6<m -m<o@<m,
u=G(6), r=a, 0<6<m -mT<Q<m,

where .
1 if 0<6<—

R 1 <0< R
0, if g<6<m

Note that the solution # must be independent of ¢. In spherical coordinates, the
Laplacian is written as

3 This section corresponds to §4.3 of the textbook.
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1
——u
r2sin2g *°

P
* 25 gg M Oue) +

2 1
= Uy + ~ty + — (ugg +cot Bug).
r r

We use separation of variables: u(r,0) = R(r)®(6). By introducing the separation
constant A, we get

0" +cotb® +10 =0, 4.5)
2 A
R+ ;R’ — ﬁR =0. (4.6)

If A is not of the form A = k(k+1) (k=0,1,2,---), (4.5) doesn’t have bounded
solutions (cf. the previous section). So, we put

A =k(k+1).
Then we obtain
0(0) = Pi(cosB), (1—s*)P!(s)—2sPl(s)+k(k+1)P(s) = 0.

By setting R = r” in (4.6), we obtain ¥ = k, —(k+ 1). The general solution for R(r)
is written as

R(r) = Arf + T

To have bounded solutions, we choose B = (. Hence the general solution is then
written as

u(r,0) = iAkrkPk(cos 0).
k=0

Using the orthogonality relations of Legendre polynomials, we have

2%+ 1)/2 (7 k+3 !
Ak:#/ G(0)Pi(cos 0) sin 6 d6 = kz/ Pi(s)ds.
a 0 a 0

Noting [(1 —s*)P((s)]’ + k(k+ 1)P;(s) = 0, the integral on the right-hand side is
calculated as

! 1 1 L
P(s)ds=——— [ [(1—=s*)P((s)]ds = 1-5H)P(s)|, = ——=P(0).
|| A= gy 10 =R ds = ey (=R = gy PLO)
1
We obtain Ag = 1 and A = kf,;ﬂ)”ﬁfko) (k=1,2,---). Finally we obtain

- 1
u(r,0) = ;Jr]; (2)1{}’;2(0)](2(]:’_21)&(005 0).



