
Chapter 4

PDEs in spherical coordinates

Spherically symmetric solutions 1

Using spherical coordinates, we have

x = r sinθ cosϕ, y = r sinθ sinϕ, z = r cosθ , (4.1)

where r ≥ 0, 0 ≤ θ ≤ π , and −π ≤ ϕ ≤ π .

Let us consider the Laplacian. We recall that in cylindrical coordinates (or polar

coordinates) we have

x = ρ cosϕ, y = ρ sinϕ,

and

uxx +uyy = uρρ +
1

ρ
uρ +

1

ρ2
uϕϕ .

In spherical coordinates we have

z = r cosθ , ρ = r sinθ .

We can then read off

uzz +uρρ = urr +
1

r
ur +

1

r2
uθθ .

Hence we obtain

uxx +uyy +uzz = urr +
1

r
ur +

1

r2
uθθ +

1

ρ
uρ +

1

ρ2
uϕϕ .

We note that

r =
√

ρ2 + z2 ⇒
∂ r

∂ρ
=

ρ

r
,

tanθ =
ρ

z
⇒

d tanθ

dθ

∂θ

∂ρ
=

1

z
⇒

1

cos2 θ

∂θ

∂ρ
=

1

r cosθ
⇒

∂θ

∂ρ
=

cosθ

r
.

Therefore we obtain
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uxx +uyy +uzz = urr +
2

r
ur +

1

r2
uθθ +

cosθ

r2 sinθ
uθ +

1

r2 sin2 θ
uϕϕ .

The Laplacian is obtained as

∆u = ∇2u = uxx +uyy +uzz

=
1

r2

∂

∂ r
(r2ur)+

1

r2 sinθ

∂

∂θ
(sinθ uθ )+

1

r2 sin2 θ
uϕϕ .

We can also derive the Laplacian directly without using cylindrical coordinates.

For ux, we differentiate (4.1) with respect to x.

1 =
∂ r

∂x
sinθ cosϕ +

∂θ

∂x
r cosθ cosϕ −

∂ϕ

∂x
r sinθ sinϕ, (4.2)

0 =
∂ r

∂x
sinθ sinϕ +

∂θ

∂x
r cosθ sinϕ +

∂ϕ

∂x
r sinθ cosϕ, (4.3)

0 =
∂ r

∂x
cosθ −

∂θ

∂x
r sinθ . (4.4)

We obtain

∂ r

∂x
= sinθ cosϕ ⇐ (4.2)× sinθ cosϕ +(4.3)× sinθ sinϕ +(4.4)× cosθ ,

∂θ

∂x
=

1

r
cosθ cosϕ ⇐ (4.2)× cosθ cosϕ +(4.3)× cosθ sinϕ − (4.4)× sinθ ,

∂ϕ

∂x
=

−sinϕ

r sinθ
⇐ (4.2)× (−1)sinθ sinϕ +(4.3)× sinθ cosϕ.

Thus we have

ux =
∂u

∂ r

∂ r

∂x
+

∂u

∂θ

∂θ

∂x
+

∂u

∂ϕ

∂ϕ

∂x
= sinθ cosϕ

∂u

∂ r
+

1

r
cosθ cosϕ

∂u

∂θ
−

sinϕ

r sinθ

∂u

∂ϕ
,

and uxx =
∂ux

∂ r
∂ r
∂x

+ ∂ux

∂θ
∂θ
∂x

+ ∂ux

∂ϕ
∂ϕ
∂x

. We can similarly calculate uyy and uzz, and obtain

uxx + uyy + uzz. However, this requires a lot more lengthy calculations even though

actually it is doable.

Example 1. The temperature of the earth can be formulated as

{

ut = K∇2u, −∞ < t < ∞, 0 ≤ r < a,

u(r,θ ,ϕ, t) = eiωt , −∞ < t < ∞, r = a,

where a is the radius of the earth. Taking into account the spherical symmetry, we

look for the solution in the form u = u(r, t). Then ∇2u = urr +
2
r
ur. Define
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w(r, t) = ru(r, t).

The new function satisfies











wt = Kwrr, −∞ < t < ∞, 0 ≤ r < a,

w(a, t) = aeiωt , −∞ < t < ∞,

w(0, t) = 0, −∞ < t < ∞.

By assuming w(r, t) = eiωteγr, we obtain γ =±c(1+ i), where c =
√

ω/2K. Hence,

u(r, t) =
a

r
eiωt ec(1+i)r − e−c(1+i)r

ec(1+i)a − e−c(1+i)a
.

Legendre polynomials 2

Let us begin with

Θ ′′(θ)+ cotθ Θ ′(θ)+µΘ(θ) = 0.

By writing s = cosθ , y(s) =Θ(θ), we have the Legendre equation (recall Example

9 in Chapter 2)

(1− s2)y′′−2sy′+µy =
d

ds

[

(1− s2)
dy

ds

]

+µy = 0.

Suppose y(s) = ∑∞
n=0 ansn be a solution. Then we obtain

an+2 =
n(n+1)−µ

(n+2)(n+1)
an, n = 0,1,2, · · · .

If µ is of the form k(k+ 1) (k = 0,1,2, · · · ), then y(s) is a polynomial of degree k.

Otherwise the series for y diverges. For given k, we have

ak =
(2k)!

2k(k!)2
,

{

a1 = 0, k even,

a0 = 0, k odd.

The value of ak is determined so that y(1) = 1. Therefore the solution to

(1− s2)y′′−2sy′+ k(k+1)y = 0

is a polynomial of degree k, i.e.,

y(s) = Pk(s) =
k

∑
n=0

ansn.

2 This section corresponds to §4.2 of the textbook.
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This polynomial Pk(s) is the Legendre polynomial of degree k. We see that Pk(s) is

even for k = 0,2,4, · · · , and odd for k = 1,3,5, · · · .
Since Pk(s) are eigenfunctions of a Sturm-Liouville eigenvalue problem, they are

orthogonal to each other:

∫ 1

−1
Pn(s)Pn′(s)ds =

∫ π

0
Pn(cosθ)Pn′(cosθ)sinθdθ = 0, n 6= n′.

Let us expand the polynomial (d/ds)s(s2 −1)k with Legendre polynomials.

(

d

ds

)s

(s2 −1)k =
k

∑
j=0

c jPj(s).

Using the above orthogonality relations, we obtain c j = 0 for j < k and ck = 2kk!.

Thus, we obtain Rodrigues’ formula:

Pk(s) =
1

2kk!

(

d

ds

)k

(s2 −1)k.

Using Rodrigues’ formula, we find

∫ 1

−1
Pk(s)

2ds =
2

2k+1
.

The Legendre polynomials satisfy the following three-term recurrence rela-

tion.

nPn(s) = (2n−1)sPn−1(s)− (n−1)Pn−2(s) n = 2,3, · · · ,

P0(s) = 1, P1(s) = s.

We have

P0(s) = 1, P1(s) = s, P2(s) =
1

2

(

3s2 −1
)

, . . . .

These Legendre polynomials are plotted in Fig. 4.1.

We consider the Legendre polynomial expansions. Consider the expansion of a

function f (s) in a series of Legendre polynomials.

f (s) =
∞

∑
k=0

AkPk(s), −1 ≤ s ≤ 1.

Then we have
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Fig. 4.1 Legendre polynomials P0(s), P1(s), and P2(s) are plotted.

∫ 1

−1
f (s)Pj(s)ds =

∫ 1

−1

∞

∑
k=0

AkPk(s)Pj(s)ds =
2A j

2 j+1
.

Therefore we obtain A j = [(2 j+1)/2]
∫ 1
−1 f (s)Pj(s)ds.

Theorem 1. Let f (s), −1 < s < 1, be a piecewise smooth function. Let

Ak =
2k+1

2

∫ 1

−1
f (s)Pk(s)ds, k = 0,1,2, · · · .

Then
∞

∑
k=0

AkPk(s) =
1

2
[ f (s+0)+ f (s−0)] , −1 < s < 1.

At s = 1 (s =−1), the series converges to f (1−0) ( f (−1+0)).

Example 2. Let us find the expansion of the function f (s)= 1 in a series of Legendre

polynomials. If we write 1 = ∑∞
k=0 AkPk(s), we obtain
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Ak =
2k+1

2

∫ 1

−1
Pk(s)ds =

2k+1

2

∫ 1

−1
P0(s)Pk(s)ds = δk0.

Therefore, 1 = ∑∞
k=0 AkPk(s) = P0(s) = 1.

On the interval 0 < s < 1, we can define an odd function or even function by

extending f (s) and consider the expansion on (−1,1) just like Fourier sine (cosine)

series.

Example 3. Consider f (s)= 1, 0< s< 1, in a series of the form ∑∞
n=0 A2n+1P2n+1(s).

We define fO(s) = 1 (0 < s < 1), −1 (−1 < s < 0), and 0 (s = 0). Then

fO(s) =
∞

∑
k=0

AkPk(s) =
∞

∑
n=0

A2n+1P2n+1(s).

We have

A2n+1 =
4n+3

2

∫ 1

−1
fO(s)P2n+1(s)ds= (4n+3)

∫ 1

0
P2n+1(s)ds=

(4n+3)P′
2n+1(0)

(2n+1)(2n+2)
.

where we used the Legendre equation d
ds

[

(1− s2) dPk(s)
ds

]

+ k(k+1)Pk(s) = 0.

Associated Legendre polynomials

More generally we have

Θ ′′(θ)+ cotθΘ ′(θ)+

(

k(k+1)−
m2

sin2 θ

)

Θ(θ) = 0.

By using s = cosθ and y(s) =Θ(θ), the above equation becomes

(1− s2)y′′−2sy′+

(

k(k+1)−
m2

1− s2

)

y = 0.

This is the associated Legendre equation (recall Example 9 in Chapter 2). There-

fore y(s) = Pk,m(s) or Θ(θ) = Pk,m(cosθ). The associated Legendre polynomial of

degree k and order m is obtained as

Pk,m(s) = (1− s2)m/2

(

d

ds

)m

Pk(s),

where k = 0,1,2, · · · , m = 0,1, · · · ,k, and s ∈ [−1,1]. We have

P1,0(s)=P1(s), P1,1(s)=
√

1− s2, P2,0(s)=P2(s), P2,1(s)= 3s
√

1− s2, P2,2(s)= 3(1−s2).

These associated Legendre polynomials are shown in Fig. 4.2. We also note that
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∫ 1

−1
Pn,m(s)Pn′,m(s)ds = 0, n 6= n′,

∫ 1

−1
Pn,m(s)

2ds =
(n+m)!

(n−m)!

2

2k+1
.
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Fig. 4.2 (Left) associated Legendre polynomials P1,0(s), P1,1(s). (Right) associated Legendre poly-

nomials P2,0(s), P2,1(s), and P2,2(s) are plotted.

Laplace’s equation in spherical coordinates 3

Let us solve Laplace’s equation with axial symmetry.

Example 4. Let us solve the following problem.

{

∇2u = 0, 0 ≤ r < a, 0 ≤ θ ≤ π, −π ≤ ϕ ≤ π,

u = G(θ), r = a, 0 ≤ θ ≤ π, −π ≤ ϕ ≤ π,

where

G(θ) =











1, if 0 < θ <
π

2
,

0, if
π

2
< θ < π.

Note that the solution u must be independent of ϕ . In spherical coordinates, the

Laplacian is written as

3 This section corresponds to §4.3 of the textbook.
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∇2u =
1

r2

∂

∂ r
(r2ur)+

1

r2 sinθ

∂

∂θ
(sinθuθ )+

1

r2 sin2 θ
uϕϕ

= urr +
2

r
ur +

1

r2
(uθθ + cotθuθ ).

We use separation of variables: u(r,θ) = R(r)Θ(θ). By introducing the separation

constant λ , we get

Θ ′′+ cotθΘ ′+λΘ = 0, (4.5)

R′′+
2

r
R′−

λ

r2
R = 0. (4.6)

If λ is not of the form λ = k(k + 1) (k = 0,1,2, · · · ), (4.5) doesn’t have bounded

solutions (cf. the previous section). So, we put

λ = k(k+1).

Then we obtain

Θ(θ) = Pk(cosθ), (1− s2)P′′
k (s)−2sP′

k(s)+ k(k+1)Pk(s) = 0.

By setting R = rγ in (4.6), we obtain γ = k,−(k+1). The general solution for R(r)
is written as

R(r) = Ark +
B

rk+1
.

To have bounded solutions, we choose B = 0. Hence the general solution is then

written as

u(r,θ) =
∞

∑
k=0

AkrkPk(cosθ).

Using the orthogonality relations of Legendre polynomials, we have

Ak =
(2k+1)/2

ak

∫ π

0
G(θ)Pk(cosθ)sinθ dθ =

k+ 1
2

ak

∫ 1

0
Pk(s)ds.

Noting [(1− s2)P′
k(s)]

′ + k(k + 1)Pk(s) = 0, the integral on the right-hand side is

calculated as

∫ 1

0
Pk(s)ds=

−1

k(k+1)

∫ 1

0
[(1−s2)P′

k(s)]
′ds=

−1

k(k+1)
(1− s2)P′

k(s)
∣

∣

1

0
=

1

k(k+1)
P′

k(0).

We obtain A0 =
1
2

and Ak =
k+ 1

2
k(k+1)

P′
k(0)

ak (k = 1,2, · · · ). Finally we obtain

u(r,θ) =
1

2
+

∞

∑
k=1

( r

a

)k

P′
k(0)

k+ 1
2

k(k+1)
Pk(cosθ).


