Chapter 4

PDEs in spherical coordinates

Spherically symmetric solutions ${ }^{1}$

Using spherical coordinates, we have

$$
\begin{equation*}
x=r \sin \theta \cos \varphi, \quad y=r \sin \theta \sin \varphi, \quad z=r \cos \theta \tag{4.1}
\end{equation*}
$$

where $r \geq 0,0 \leq \theta \leq \pi$, and $-\pi \leq \varphi \leq \pi$.
Let us consider the Laplacian. We recall that in cylindrical coordinates (or polar coordinates) we have

$$
x=\rho \cos \varphi, \quad y=\rho \sin \varphi
$$

and

$$
u_{x x}+u_{y y}=u_{\rho \rho}+\frac{1}{\rho} u_{\rho}+\frac{1}{\rho^{2}} u_{\varphi \varphi} .
$$

In spherical coordinates we have

$$
z=r \cos \theta, \quad \rho=r \sin \theta
$$

We can then read off

$$
u_{z z}+u_{\rho \rho}=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} .
$$

Hence we obtain

$$
u_{x x}+u_{y y}+u_{z z}=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}+\frac{1}{\rho} u_{\rho}+\frac{1}{\rho^{2}} u_{\varphi \varphi} .
$$

We note that

$$
r=\sqrt{\rho^{2}+z^{2}} \Rightarrow \frac{\partial r}{\partial \rho}=\frac{\rho}{r}
$$

$\tan \theta=\frac{\rho}{z} \Rightarrow \frac{d \tan \theta}{d \theta} \frac{\partial \theta}{\partial \rho}=\frac{1}{z} \quad \Rightarrow \quad \frac{1}{\cos ^{2} \theta} \frac{\partial \theta}{\partial \rho}=\frac{1}{r \cos \theta} \quad \Rightarrow \quad \frac{\partial \theta}{\partial \rho}=\frac{\cos \theta}{r}$.
Therefore we obtain

[^0]$$
u_{x x}+u_{y y}+u_{z z}=u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}+\frac{\cos \theta}{r^{2} \sin \theta} u_{\theta}+\frac{1}{r^{2} \sin ^{2} \theta} u_{\varphi \varphi} .
$$

The Laplacian is obtained as

$$
\begin{aligned}
\Delta u & =\nabla^{2} u=u_{x x}+u_{y y}+u_{z z} \\
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta u_{\theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} u_{\varphi \varphi} .
\end{aligned}
$$

We can also derive the Laplacian directly without using cylindrical coordinates. For u_{x}, we differentiate (4.1) with respect to x.

$$
\begin{array}{r}
1=\frac{\partial r}{\partial x} \sin \theta \cos \varphi+\frac{\partial \theta}{\partial x} r \cos \theta \cos \varphi-\frac{\partial \varphi}{\partial x} r \sin \theta \sin \varphi \\
0=\frac{\partial r}{\partial x} \sin \theta \sin \varphi+\frac{\partial \theta}{\partial x} r \cos \theta \sin \varphi+\frac{\partial \varphi}{\partial x} r \sin \theta \cos \varphi \\
0=\frac{\partial r}{\partial x} \cos \theta-\frac{\partial \theta}{\partial x} r \sin \theta \tag{4.4}
\end{array}
$$

We obtain
$\frac{\partial r}{\partial x}=\sin \theta \cos \varphi \quad \Leftarrow \quad(4.2) \times \sin \theta \cos \varphi+(4.3) \times \sin \theta \sin \varphi+(4.4) \times \cos \theta$,
$\frac{\partial \theta}{\partial x}=\frac{1}{r} \cos \theta \cos \varphi \quad \Leftarrow \quad(4.2) \times \cos \theta \cos \varphi+(4.3) \times \cos \theta \sin \varphi-(4.4) \times \sin \theta$,
$\frac{\partial \varphi}{\partial x}=\frac{-\sin \varphi}{r \sin \theta} \Leftarrow(4.2) \times(-1) \sin \theta \sin \varphi+(4.3) \times \sin \theta \cos \varphi$.
Thus we have
$u_{x}=\frac{\partial u}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial x}+\frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial x}=\sin \theta \cos \varphi \frac{\partial u}{\partial r}+\frac{1}{r} \cos \theta \cos \varphi \frac{\partial u}{\partial \theta}-\frac{\sin \varphi}{r \sin \theta} \frac{\partial u}{\partial \varphi}$,
and $u_{x x}=\frac{\partial u_{x}}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial u_{x}}{\partial \theta} \frac{\partial \theta}{\partial x}+\frac{\partial u_{x}}{\partial \varphi} \frac{\partial \varphi}{\partial x}$. We can similarly calculate $u_{y y}$ and $u_{z z}$, and obtain $u_{x x}+u_{y y}+u_{z z}$. However, this requires a lot more lengthy calculations even though actually it is doable.

Example 1. The temperature of the earth can be formulated as

$$
\left\{\begin{aligned}
u_{t}=K \nabla^{2} u, & -\infty<t<\infty, \quad 0 \leq r<a, \\
u(r, \theta, \varphi, t)=e^{i \omega t}, & -\infty<t<\infty, \quad r=a,
\end{aligned}\right.
$$

where a is the radius of the earth. Taking into account the spherical symmetry, we look for the solution in the form $u=u(r, t)$. Then $\nabla^{2} u=u_{r r}+\frac{2}{r} u_{r}$. Define

$$
w(r, t)=r u(r, t) .
$$

The new function satisfies

$$
\left\{\begin{aligned}
w_{t}=K w_{r r}, & -\infty<t<\infty, \quad 0 \leq r<a \\
w(a, t)=a e^{i \omega t}, & -\infty<t<\infty \\
w(0, t)=0, & -\infty<t<\infty
\end{aligned}\right.
$$

By assuming $w(r, t)=e^{i \omega t} e^{\gamma r}$, we obtain $\gamma= \pm c(1+i)$, where $c=\sqrt{\omega / 2 K}$. Hence,

$$
u(r, t)=\frac{a}{r} e^{i \omega t} \frac{e^{c(1+i) r}-e^{-c(1+i) r}}{e^{c(1+i) a}-e^{-c(1+i) a}}
$$

Legendre polynomials ${ }^{2}$

Let us begin with

$$
\Theta^{\prime \prime}(\theta)+\cot \theta \Theta^{\prime}(\theta)+\mu \Theta(\theta)=0
$$

By writing $s=\cos \theta, y(s)=\Theta(\theta)$, we have the Legendre equation (recall Example 9 in Chapter 2)

$$
\left(1-s^{2}\right) y^{\prime \prime}-2 s y^{\prime}+\mu y=\frac{d}{d s}\left[\left(1-s^{2}\right) \frac{d y}{d s}\right]+\mu y=0
$$

Suppose $y(s)=\sum_{n=0}^{\infty} a_{n} s^{n}$ be a solution. Then we obtain

$$
a_{n+2}=\frac{n(n+1)-\mu}{(n+2)(n+1)} a_{n}, \quad n=0,1,2, \cdots .
$$

If μ is of the form $k(k+1)(k=0,1,2, \cdots)$, then $y(s)$ is a polynomial of degree k. Otherwise the series for y diverges. For given k, we have

$$
a_{k}=\frac{(2 k)!}{2^{k}(k!)^{2}}, \quad \begin{cases}a_{1}=0, & k \text { even } \\ a_{0}=0, & k \text { odd }\end{cases}
$$

The value of a_{k} is determined so that $y(1)=1$. Therefore the solution to

$$
\left(1-s^{2}\right) y^{\prime \prime}-2 s y^{\prime}+k(k+1) y=0
$$

is a polynomial of degree k, i.e.,

$$
y(s)=P_{k}(s)=\sum_{n=0}^{k} a_{n} s^{n}
$$

[^1]This polynomial $P_{k}(s)$ is the Legendre polynomial of degree k. We see that $P_{k}(s)$ is even for $k=0,2,4, \cdots$, and odd for $k=1,3,5, \cdots$.

Since $P_{k}(s)$ are eigenfunctions of a Sturm-Liouville eigenvalue problem, they are orthogonal to each other:

$$
\int_{-1}^{1} P_{n}(s) P_{n^{\prime}}(s) d s=\int_{0}^{\pi} P_{n}(\cos \theta) P_{n^{\prime}}(\cos \theta) \sin \theta d \theta=0, \quad n \neq n^{\prime}
$$

Let us expand the polynomial $(d / d s)^{s}\left(s^{2}-1\right)^{k}$ with Legendre polynomials.

$$
\left(\frac{d}{d s}\right)^{s}\left(s^{2}-1\right)^{k}=\sum_{j=0}^{k} c_{j} P_{j}(s)
$$

Using the above orthogonality relations, we obtain $c_{j}=0$ for $j<k$ and $c_{k}=2^{k} k$!. Thus, we obtain Rodrigues' formula:

$$
P_{k}(s)=\frac{1}{2^{k} k!}\left(\frac{d}{d s}\right)^{k}\left(s^{2}-1\right)^{k}
$$

Using Rodrigues' formula, we find

$$
\int_{-1}^{1} P_{k}(s)^{2} d s=\frac{2}{2 k+1} .
$$

The Legendre polynomials satisfy the following three-term recurrence relation.

$$
\begin{array}{r}
n P_{n}(s)=(2 n-1) s P_{n-1}(s)-(n-1) P_{n-2}(s) \quad n=2,3, \cdots, \\
P_{0}(s)=1, \quad P_{1}(s)=s .
\end{array}
$$

We have

$$
P_{0}(s)=1, \quad P_{1}(s)=s, \quad P_{2}(s)=\frac{1}{2}\left(3 s^{2}-1\right), \ldots .
$$

These Legendre polynomials are plotted in Fig. 4.1.
We consider the Legendre polynomial expansions. Consider the expansion of a function $f(s)$ in a series of Legendre polynomials.

$$
f(s)=\sum_{k=0}^{\infty} A_{k} P_{k}(s), \quad-1 \leq s \leq 1 .
$$

Then we have

Fig. 4.1 Legendre polynomials $P_{0}(s), P_{1}(s)$, and $P_{2}(s)$ are plotted.

$$
\int_{-1}^{1} f(s) P_{j}(s) d s=\int_{-1}^{1} \sum_{k=0}^{\infty} A_{k} P_{k}(s) P_{j}(s) d s=\frac{2 A_{j}}{2 j+1} .
$$

Therefore we obtain $A_{j}=[(2 j+1) / 2] \int_{-1}^{1} f(s) P_{j}(s) d s$.

Theorem 1. Let $f(s),-1<s<1$, be a piecewise smooth function. Let

$$
A_{k}=\frac{2 k+1}{2} \int_{-1}^{1} f(s) P_{k}(s) d s, \quad k=0,1,2, \cdots
$$

Then

$$
\sum_{k=0}^{\infty} A_{k} P_{k}(s)=\frac{1}{2}[f(s+0)+f(s-0)], \quad-1<s<1
$$

At $s=1(s=-1)$, the series converges to $f(1-0)(f(-1+0))$.

Example 2. Let us find the expansion of the function $f(s)=1$ in a series of Legendre polynomials. If we write $1=\sum_{k=0}^{\infty} A_{k} P_{k}(s)$, we obtain

$$
A_{k}=\frac{2 k+1}{2} \int_{-1}^{1} P_{k}(s) d s=\frac{2 k+1}{2} \int_{-1}^{1} P_{0}(s) P_{k}(s) d s=\delta_{k 0} .
$$

Therefore, $1=\sum_{k=0}^{\infty} A_{k} P_{k}(s)=P_{0}(s)=1$.
On the interval $0<s<1$, we can define an odd function or even function by extending $f(s)$ and consider the expansion on $(-1,1)$ just like Fourier sine (cosine) series.

Example 3. Consider $f(s)=1,0<s<1$, in a series of the form $\sum_{n=0}^{\infty} A_{2 n+1} P_{2 n+1}(s)$. We define $f_{O}(s)=1(0<s<1),-1(-1<s<0)$, and $0(s=0)$. Then

$$
f_{O}(s)=\sum_{k=0}^{\infty} A_{k} P_{k}(s)=\sum_{n=0}^{\infty} A_{2 n+1} P_{2 n+1}(s) .
$$

We have
$A_{2 n+1}=\frac{4 n+3}{2} \int_{-1}^{1} f_{O}(s) P_{2 n+1}(s) d s=(4 n+3) \int_{0}^{1} P_{2 n+1}(s) d s=\frac{(4 n+3) P_{2 n+1}^{\prime}(0)}{(2 n+1)(2 n+2)}$.
where we used the Legendre equation $\frac{d}{d s}\left[\left(1-s^{2}\right) \frac{d P_{k}(s)}{d s}\right]+k(k+1) P_{k}(s)=0$.

Associated Legendre polynomials

More generally we have

$$
\Theta^{\prime \prime}(\theta)+\cot \theta \Theta^{\prime}(\theta)+\left(k(k+1)-\frac{m^{2}}{\sin ^{2} \theta}\right) \Theta(\theta)=0
$$

By using $s=\cos \theta$ and $y(s)=\Theta(\theta)$, the above equation becomes

$$
\left(1-s^{2}\right) y^{\prime \prime}-2 s y^{\prime}+\left(k(k+1)-\frac{m^{2}}{1-s^{2}}\right) y=0
$$

This is the associated Legendre equation (recall Example 9 in Chapter 2). Therefore $y(s)=P_{k, m}(s)$ or $\Theta(\theta)=P_{k, m}(\cos \theta)$. The associated Legendre polynomial of degree k and order m is obtained as

$$
P_{k, m}(s)=\left(1-s^{2}\right)^{m / 2}\left(\frac{d}{d s}\right)^{m} P_{k}(s)
$$

where $k=0,1,2, \cdots, m=0,1, \cdots, k$, and $s \in[-1,1]$. We have
$P_{1,0}(s)=P_{1}(s), \quad P_{1,1}(s)=\sqrt{1-s^{2}}, \quad P_{2,0}(s)=P_{2}(s), \quad P_{2,1}(s)=3 s \sqrt{1-s^{2}}, \quad P_{2,2}(s)=3\left(1-s^{2}\right)$.
These associated Legendre polynomials are shown in Fig. 4.2. We also note that

$$
\begin{gathered}
\int_{-1}^{1} P_{n, m}(s) P_{n^{\prime}, m}(s) d s=0, \quad n \neq n^{\prime}, \\
\int_{-1}^{1} P_{n, m}(s)^{2} d s=\frac{(n+m)!}{(n-m)!} \frac{2}{2 k+1} .
\end{gathered}
$$

Fig. 4.2 (Left) associated Legendre polynomials $P_{1,0}(s), P_{1,1}(s)$. (Right) associated Legendre polynomials $P_{2,0}(s), P_{2,1}(s)$, and $P_{2,2}(s)$ are plotted.

Laplace's equation in spherical coordinates ${ }^{3}$

Let us solve Laplace's equation with axial symmetry.
Example 4. Let us solve the following problem.

$$
\left\{\begin{array}{cl}
\nabla^{2} u=0, & 0 \leq r<a, \quad 0 \leq \theta \leq \pi, \quad-\pi \leq \varphi \leq \pi \\
u=G(\theta), & r=a, \quad 0 \leq \theta \leq \pi, \quad-\pi \leq \varphi \leq \pi
\end{array}\right.
$$

where

$$
G(\theta)= \begin{cases}1, & \text { if } \quad 0<\theta<\frac{\pi}{2} \\ 0, & \text { if } \quad \frac{\pi}{2}<\theta<\pi\end{cases}
$$

Note that the solution u must be independent of φ. In spherical coordinates, the Laplacian is written as

[^2]\[

$$
\begin{aligned}
\nabla^{2} u & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta u_{\theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} u_{\varphi \varphi} \\
& =u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}}\left(u_{\theta \theta}+\cot \theta u_{\theta}\right) .
\end{aligned}
$$
\]

We use separation of variables: $u(r, \theta)=R(r) \Theta(\theta)$. By introducing the separation constant λ, we get

$$
\begin{align*}
\Theta^{\prime \prime}+\cot \theta \Theta^{\prime}+\lambda \Theta & =0 \tag{4.5}\\
R^{\prime \prime}+\frac{2}{r} R^{\prime}-\frac{\lambda}{r^{2}} R & =0 \tag{4.6}
\end{align*}
$$

If λ is not of the form $\lambda=k(k+1)(k=0,1,2, \cdots)$, (4.5) doesn't have bounded solutions (cf. the previous section). So, we put

$$
\lambda=k(k+1)
$$

Then we obtain

$$
\Theta(\theta)=P_{k}(\cos \theta), \quad\left(1-s^{2}\right) P_{k}^{\prime \prime}(s)-2 s P_{k}^{\prime}(s)+k(k+1) P_{k}(s)=0
$$

By setting $R=r^{\gamma}$ in (4.6), we obtain $\gamma=k,-(k+1)$. The general solution for $R(r)$ is written as

$$
R(r)=A r^{k}+\frac{B}{r^{k+1}}
$$

To have bounded solutions, we choose $B=0$. Hence the general solution is then written as

$$
u(r, \theta)=\sum_{k=0}^{\infty} A_{k} r^{k} P_{k}(\cos \theta)
$$

Using the orthogonality relations of Legendre polynomials, we have

$$
A_{k}=\frac{(2 k+1) / 2}{a^{k}} \int_{0}^{\pi} G(\theta) P_{k}(\cos \theta) \sin \theta d \theta=\frac{k+\frac{1}{2}}{a^{k}} \int_{0}^{1} P_{k}(s) d s
$$

Noting $\left[\left(1-s^{2}\right) P_{k}^{\prime}(s)\right]^{\prime}+k(k+1) P_{k}(s)=0$, the integral on the right-hand side is calculated as
$\int_{0}^{1} P_{k}(s) d s=\frac{-1}{k(k+1)} \int_{0}^{1}\left[\left(1-s^{2}\right) P_{k}^{\prime}(s)\right]^{\prime} d s=\left.\frac{-1}{k(k+1)}\left(1-s^{2}\right) P_{k}^{\prime}(s)\right|_{0} ^{1}=\frac{1}{k(k+1)} P_{k}^{\prime}(0)$.
We obtain $A_{0}=\frac{1}{2}$ and $A_{k}=\frac{k+\frac{1}{2}}{k(k+1)} \frac{P_{k}^{\prime}(0)}{a^{k}}(k=1,2, \cdots)$. Finally we obtain

$$
u(r, \theta)=\frac{1}{2}+\sum_{k=1}^{\infty}\left(\frac{r}{a}\right)^{k} P_{k}^{\prime}(0) \frac{k+\frac{1}{2}}{k(k+1)} P_{k}(\cos \theta)
$$

[^0]: Winter 2014 Math 454 Sec 2
 Boundary Value Problems for Partial Differential Equations
 Manabu Machida (University of Michigan)
 ${ }^{1}$ This section corresponds to $\S 4.1$ of the textbook.

[^1]: ${ }^{2}$ This section corresponds to $\S 4.2$ of the textbook.

[^2]: ${ }^{3}$ This section corresponds to $\S 4.3$ of the textbook.

