Chapter 3
PDE:s in cylindrical coordinates

Laplace’s equation and applications

In cylindrical coordinates we use p, ¢,z instead of x,y, z:
xX=pcosQ, y=psinQ, z=z.

In rectangular coordinates the Laplacian was given by A = 97 + 9 + 97. Here we
will compute the Laplacian in cylindrical coordinates.
For a function u(p, ¢,z) we have
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Hence,
Pu Pu_Pu 1w 1
oxr dy>  dp* pdp p2de*

The Laplacian is obtained as

A —V2 _8_2»:+lﬂ+ia_2u+a_2u
T T pap T pTagr o2

Example 1. Let us find separated solutions of Laplace’s equation V?u = 0 in cylin-
drical coordinates, defined for p > 0, —7 < @ < 7. Assume that « is smooth and is
independent of z.

By plugging u(p, @) = R(p)®(¢) into V2u = 0, we obtain
0=upp+ 1:4 + iu =R'd+ lR’cDJr iR<15”
pp T e 53 tee P p?

Dividing by R® and multiplying by p2, we have

R//+ 1 R/ @//
o= R WD &

By introducing the separation constant A, we have

D"+ AP =0, @&(—7)=d(n), P(-7)=P'(n),
R+ lR/ — %R =0.
P p

Note that A and @ are an eigenvalue and an eigenfunction of the Sturm-Liouville
problem: A = m? and ®(¢) = A,,cosm@ + B,,sinme (m =0,1,2,...). Separated
solutions are obtained as

p" (A cosm@ + By sinmp), m=1,2...,
u(p, o) = Ao+ Bolnp, m=0,
p " (Cpcosm@ +Dysinme), m=12,....

In the last two cases we have |u| — o0 as p — 0 and u is not smooth. Therefore,

u(p,)=p" (A,cosm@+By,sinm@), m=1,2,....
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Bessel functions 2

Let us begin with

1 1, m?
R(p)+ R (p)+ (2" R(p) =0, G.1)

Let x = pv/A and y(x) = R(p). Then, (3.1) becomes

1 m?
y"+;y'+ <1xz)y0. (3.2)

Equation (3.2) is Bessel’s equation (recall Example 8 in Chapter 2). Therefore
Y(x) = Jm(x) or
R(p) =Ju(pV2).

Definition 1.

_ 1
2w

T .
I (x) /e’xcosee*"""de, m=0,1,2,.... (3.3)
—TT

Bessel functions J,,(x) behave as shown in Fig. 3.1. We will show in the end of
this section that J,,(x) in (3.3) satisfies (3.2).
The following recurrence formula holds.

X

I (x) = - (1 (x) + 1 ()], m=1,2,.... 3.4

Derivatives are given as (the differentiation formula)

1
J(x) = 3 Im—1(x) =Ims1(x)], m=0,1,2,.... (3.5)

By considering [(3.5)4+ (m/x)(3.4)]x™ and [(3.5)—(m/x)(3.4)]x™, we have

% K" ()] = X" -1 (x), m=1,2,--- (3.6)
d
o [xfm.lm(x)] =—x "Jpr1(x), m=0,1,2,---. (3.7)

Let {x, } be the nonnegative solutions of the equation
I (%) €08 B+ x,J), (x,) sin f = 0, (3.8)

where m > 0and 0 < 8 < /2.

2 This section corresponds to §3.2 of the textbook.
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Fig. 3.1 Bessel functions Jy(x), Ji (x), and J>(x) are plotted.

Then we have the following orthogonality relations.

1
/0 Uelo8 i Wiotin, Jpwibe = 0 ny # ny,
1 1
/0 I (xx,)?xdx = EJerl(xn)z, if B=0, (3.9)
1 2_ 2 2
/ I (2,) 2 xdx = wlm(xn)z, if 0<B< z
0 2xz 2

From the Sturm-Liouville theory, the first equation (orthogonality) holds. For the
second and third equations, we multiply (3.1) by 2p?R’ and set A = x2.

20°R'R" +2p(R')* + (x2p* — m*)2RR' = 0.
We can rewrite this as

[(PR)?] + (x2p? — m?)(R?) =0.
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By integrating both sides and using integration by parts, we get

1
(PR|,_ — (PR)?|,_o+ (x2p? —m?)R?| — /0 25,pR*dp = 0.

Note that R(p) = Ju(pxs) and R'(p) = x,J;,(x)|x=px,. Hence R(0) = J,(0) =0
(m=1,2,---). We obtain

1
[xnd ()] g (X2 —m?) o (x,)* — Zx,zl/o Jn(pxy)?pdp = 0.

Therefore, when 8 = 0 or J,,(x,,) = 0, we have

2

1 21y 2 2 T (xn) — Tt 1 (Xn) 2
2 _ X [ (Xn)] _ L‘n + _ Jm+1(Xn)

/0 In(pu)”pdp = 2x2 N 2 = >

and when 0 < B < 7/2 or J,y(x,) cot B+ x,J), (x,) = 0, we have
2
v 2 [ cotB] (3 = )
J, dp =
/0 m(Pxn)"pdp 2

B (xﬁ —m? +cot? [3)],,,()6,,)2
B 2x2 '

Let us consider the expansion of a piecewise smooth function f(x), 0 < x < 1, in
a series of the form

=

f) =Y Apdn(xxy), 0<x<l, (3.10)

n=1

where {x,} are the nonnegative solutions of J,,(x)cos § +xJ;,(x) sin 3 = 0. This is
called a Fourier-Bessel expansion. By multiplying (3.10) by J,, (xx,) and integrating
both sides, we obtain

1
A, = Jo S Imlos)xdx (3.11)

Jo T ()2l

Theorem 1. Let m >0, 0 < B < /2, and let {x, : n > 1} be the nonnegative
solutions of (3.8). If f(x), 0 < x < 1, is a piecewise smooth function, define
{Ay: n>1} by (3.11). Then the series Y| AnJu(xx,) converges for each
x € [0,1], and the sum is 3 [f(x+0)+ f(x—0)] for 0 < x < 1.
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Example 2. Let us compute the Fourier-Bessel expansion of the function f(x) = 1,
0<x<1,wherem=0and B =0.Wehave 1l =Y | A,Jo(xx,), where Jo(x,) =0
and

1 1
/ xJo (xx, )dx :An/ Jo(xx,)?xdx, n=1,2,---.
0 0

Using (3.6) and (3.9), we obtain

. 1 x"
B xiz 0" tdo(r)dt B g’fl(f)‘o B =1 () 2
" Jo Jo(xx)2xdx [y o (xxn)2xdx ) xdi(x)

Therefore,

; Jl xn)

Finally we show that Bessel functions (3.3) are solutions to Bessel’s equation.
Lety =Y qanx""7 (ap # 0, y > 0) be a solution to (3.2). We obtain

(¥ —m?) apx”+ ((1 +7)* —=m*) arx"' + i [((n+7)?>=m*) an+ay, 2] X7 =0.

n=2
Hence,
y=m, a=0, a,= (;C_l:;n) (n>2)
We obtain
(1

- 1
= aox” +Z 2021 2m)4(4+2m) - 2n(2n + 2m)

Let us choose ap = 1/m!2™. Then,

0 )n 2n+m
=) ——— 3.12
g’ 2 (m+n)ln!’ (3.12)
We rewrite (3.3) using e*“*% = ¥ (ixcos6)"/n! and introducing j as n =
m+2j.
I & ()" [*® ;
() = 3 ) | _costoeimap.
2w =0 n! -7
The integral is nonzero only for n =m,m+2,m-+4,.... We introduce j (n = m+
2).
1 I (x)erZj T . .
J _ m—+2j 0 lmede
() 27171"";) CEST] /%cos e
_ i x)" 2] <m—|—2j)1 3 ﬂ:@ 12)
T = m+2] (m+2j)12m2i \ im0 2m20 (m+- )1
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The vibrating drumhead >

Let us consider small transverse vibrations of a circular membrane.
292 2 1 1
uy =c"Vu=c upp+5up+?uw , 0<p<a, t>0,

ulp,9,t)=0, p=a, t>0,
u(p,9,0)=1, u(p,9,00=0, 0<p<a.

where ¢? = Ty/p (cf. Chapter 2).
We look for separated solutions in the form

u(p,9,t) =R(p)P(9)T(1).

By introducing separation constants as —4 = (1/¢*)T”/T and —u = @" /P, we
obtain

?"(¢)+ud(9) =0, @(-m)=®(n), P'(-m)=&'(1), (3.13)
/! 1 / IJ“ _ —

R (p)+5R (p)+ (Apz) R(p)=0, R(a)=0, (3.14)

T"(t) + A>T (1) =0.  (3.15)

In (3.13), nontrivial solutions are obtained when (i) >0, \/it = 1,2,---, and (ii)
u=0:

D(p) =Acosm@+ Bsinmp, m=0,1,2,---.
With g =m? (m=0,1,2,---), we obtain R(p) = J,,(pv/A). For R(a) = 0, we obtain
N x,(,m> /a where xf,m) >0,J, (x,ﬁ’”)) = 0. The separated solutions are obtained as

(m) (m) (m)
u(p,@,t) =Jn (pxn ) (Acosm@ + Bsinmo) (Acos ctn + Bsin ctn ) )
a P -

(3.16)
We will now take the initial conditions into account. The general solution is given
as a linear combination (superposition) of (3.16). To satisfy u;(p,®,0) = 0, we set

B = 0. Now the solution is written as
(m)
X
an‘]m <pn>
a

S px”)
u(pv(pvt): Z Z Aanm T cosm@ +

m=0n=1
Consider the Fourier series u(p,,0) =1 = Ag+ Y,,_; A cos(mx) + By, sin(mx).
We can readily find Ag = 1, An=B,=0 (m>1).(Of course we can also ob-
tain them as Ag = 5= [ 1dx, A,, = L [T cos(mx)dx, and B, = L [*, sin(mx)dx.)
Therefore,

(m)

ctxy,

sinm(p} cos

3 This section corresponds to §3.3 of the textbook.
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Apn = By =0, for m>1,
and (0) (0)
ctxp
u(p,e,t) ZAOnJO (p ) p
(0)
In Example 2, we calculated the Fourier-Bessel expansion 1 =23 % By

comparison, finally we obtain

oo (0) (0)
PXn ctxy

p Q, t cos .
; 11(< ) ( “ ) “

Heat flow in the infinite cylinder

Let us consider the heat transfer in the infinite cylinder 0 < p < ppax. We will solve
the heat equation in polar coordinates

w=KViu, t>0, 0<p<pmm, —-T<Q<T,
u(Pmax, @,1) =T, t>0, —-nm<op<m,
u(p,,0) =1, 0<p<pPmax;, —T<Q<T,

where T and 75 are positive constants.

Step 1

To find the steady-state solution, we try U(p) because the b. c. is independent of ¢.
U 19U 1 9%*U 1
KV?U =K ——t——=—— | =K (U"+-U") =0.
<8p2+p8p+pz8<p2) < o
The general solution is obtained as

U(p) =A+Blnp.

Let us exclude the second term and set B = 0 (otherwise U(0) diverges and the
initial condition in Step 2 will also diverge). To satisfy U(pmax) = T1, we choose
A = Tj. We thus obtain

U(p)=T.

4 This section corresponds to §3.4 of the textbook.
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Step 2
Define v(p, @,t) = u(p,@,t) —U(p). We have
v=KV¥ = 1t>0, 0<p<pmx, -T<Q<T,
V(Pmax;(Pvt)ZOa t>03 —ES(PSTC,
v(p,9,0)=To-U(p), O0=<p<pmx, —T<Q=T,
Step 3

Using separation of variables with u(p, ®,1) = R(p)®(¢)7T (), we obtain

(m)\*
- v pxn : (xn ) ki
ulp,@.0)=3 Y Jn (A COSMQ + By sinme) exp S
m=0n=1 max max

Noting that 1 =2}, onjlxx" (0 <x < 1, Jo(x,) = 0), the solution is obtained as

K
u(p,(p,t) T1+ZA JO<p )GXP |:x"2 t:|7

n=1 Pmax Prnax

where A, = 22 () =0,n=1,2, .




