Chapter 3

PDEs in cylindrical coordinates

Laplace's equation and applications ${ }^{1}$

In cylindrical coordinates we use ρ, φ, z instead of x, y, z :

$$
x=\rho \cos \varphi, \quad y=\rho \sin \varphi, \quad z=z .
$$

In rectangular coordinates the Laplacian was given by $\Delta=\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}$. Here we will compute the Laplacian in cylindrical coordinates.

For a function $u(\rho, \varphi, z)$ we have

$$
\left\{\begin{array}{l}
u_{x}=\frac{\partial u}{\partial x}=\frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial x}+\frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial x}=\cos \varphi \frac{\partial u}{\partial \rho}-\frac{\sin \varphi}{\rho} \frac{\partial u}{\partial \varphi}, \\
u_{y}=\frac{\partial u}{\partial y}=\frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial y}+\frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial y}=\sin \varphi \frac{\partial u}{\partial \rho}+\frac{\cos \varphi}{\rho} \frac{\partial u}{\partial \varphi}
\end{array}\right.
$$

where we used
$\rho^{2}=x^{2}+y^{2} \quad \Rightarrow \quad 2 \rho \frac{\partial \rho}{\partial x}=2 x, \quad 2 \rho \frac{\partial \rho}{\partial y}=2 y \quad \Rightarrow \quad \frac{\partial \rho}{\partial x}=\frac{x}{\rho}=\cos \varphi, \quad \frac{\partial \rho}{\partial y}=\frac{y}{\rho}=\sin \varphi$,
$y=\rho \sin \varphi \Rightarrow 0=\frac{\partial \rho}{\partial x} \sin \varphi+\rho \cos \varphi \frac{\partial \varphi}{\partial x}=\cos \varphi \sin \varphi+\rho \cos \varphi \frac{\partial \varphi}{\partial x} \Rightarrow \frac{\partial \varphi}{\partial x}=-\frac{\sin \varphi}{\rho}$,
and
$x=\rho \cos \varphi \Rightarrow 0=\frac{\partial \rho}{\partial y} \cos \varphi-\rho \sin \varphi \frac{\partial \varphi}{\partial y}=\sin \varphi \cos \varphi-\rho \sin \varphi \frac{\partial \varphi}{\partial y} \quad \Rightarrow \quad \frac{\partial \varphi}{\partial y}=\frac{\cos \varphi}{\rho}$.
Thus the second derivatives are obtained as

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial x^{2}}=\cos ^{2} \varphi \frac{\partial^{2} u}{\partial \rho^{2}}+\frac{2 \cos \varphi \sin \varphi}{\rho^{2}} \frac{\partial u}{\partial \varphi}-\frac{2 \sin \varphi \cos \varphi}{\rho} \frac{\partial^{2} u}{\partial \rho \partial \varphi}+\frac{\sin ^{2} \varphi}{\rho} \frac{\partial u}{\partial \rho}+\frac{\sin ^{2} \varphi}{\rho^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}} \\
\frac{\partial^{2} u}{\partial y^{2}}=\sin ^{2} \varphi \frac{\partial^{2} u}{\partial \rho^{2}}-\frac{2 \sin \varphi \cos \varphi}{\rho^{2}} \frac{\partial u}{\partial \varphi}+\frac{2 \sin \varphi \cos \varphi}{\rho} \frac{\partial^{2} u}{\partial \rho \partial \varphi}+\frac{\cos ^{2} \varphi}{\rho} \frac{\partial u}{\partial \rho}+\frac{\cos ^{2} \varphi}{\rho^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}}
\end{array}\right.
$$

[^0]Hence,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}} .
$$

The Laplacian is obtained as

$$
\Delta u=\nabla^{2} u=\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}}+\frac{\partial^{2} u}{\partial z^{2}} .
$$

Example 1. Let us find separated solutions of Laplace's equation $\nabla^{2} u=0$ in cylindrical coordinates, defined for $\rho>0,-\pi \leq \varphi \leq \pi$. Assume that u is smooth and is independent of z.

By plugging $u(\rho, \varphi)=R(\rho) \Phi(\varphi)$ into $\nabla^{2} u=0$, we obtain

$$
0=u_{\rho \rho}+\frac{1}{\rho} u_{\rho}+\frac{1}{\rho^{2}} u_{\varphi \varphi}=R^{\prime \prime} \Phi+\frac{1}{\rho} R^{\prime} \Phi+\frac{1}{\rho^{2}} R \Phi^{\prime \prime} .
$$

Dividing by $R \Phi$ and multiplying by ρ^{2}, we have

$$
0=\rho^{2} \frac{R^{\prime \prime}+(1 / \rho) R^{\prime}}{R}+\frac{\Phi^{\prime \prime}}{\Phi} .
$$

By introducing the separation constant λ, we have

$$
\left\{\begin{array}{r}
\Phi^{\prime \prime}+\lambda \Phi=0, \quad \Phi(-\pi)=\Phi(\pi), \quad \Phi^{\prime}(-\pi)=\Phi^{\prime}(\pi) \\
R^{\prime \prime}+\frac{1}{\rho} R^{\prime}-\frac{\lambda}{\rho^{2}} R=0 .
\end{array}\right.
$$

Note that λ and Φ are an eigenvalue and an eigenfunction of the Sturm-Liouville problem: $\lambda=m^{2}$ and $\Phi(\varphi)=A_{m} \cos m \varphi+B_{m} \sin m \varphi(m=0,1,2, \ldots)$. Separated solutions are obtained as

$$
u(\rho, \varphi)=\left\{\begin{aligned}
\rho^{m}\left(A_{m} \cos m \varphi+B_{m} \sin m \varphi\right), & m=1,2, \ldots, \\
A_{0}+B_{0} \ln \rho, & m=0, \\
\rho^{-m}\left(C_{m} \cos m \varphi+D_{m} \sin m \varphi\right), & m=1,2, \ldots
\end{aligned}\right.
$$

In the last two cases we have $|u| \rightarrow \infty$ as $\rho \rightarrow 0$ and u is not smooth. Therefore,

$$
u(\rho, \varphi)=\rho^{m}\left(A_{m} \cos m \varphi+B_{m} \sin m \varphi\right), \quad m=1,2, \ldots
$$

Bessel functions ${ }^{2}$

Let us begin with

$$
\begin{equation*}
R^{\prime \prime}(\rho)+\frac{1}{\rho} R^{\prime}(\rho)+\left(\lambda-\frac{m^{2}}{\rho^{2}}\right) R(\rho)=0 \tag{3.1}
\end{equation*}
$$

Let $x=\rho \sqrt{\lambda}$ and $y(x)=R(\rho)$. Then, (3.1) becomes

$$
\begin{equation*}
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{m^{2}}{x^{2}}\right) y=0 . \tag{3.2}
\end{equation*}
$$

Equation (3.2) is Bessel's equation (recall Example 8 in Chapter 2). Therefore $y(x)=J_{m}(x)$ or

$$
R(\rho)=J_{m}(\rho \sqrt{\lambda})
$$

Definition 1.

$$
\begin{equation*}
J_{m}(x)=\frac{1}{2 \pi i^{m}} \int_{-\pi}^{\pi} e^{i x \cos \theta} e^{-i m \theta} d \theta, \quad m=0,1,2, \ldots \tag{3.3}
\end{equation*}
$$

Bessel functions $J_{m}(x)$ behave as shown in Fig. 3.1. We will show in the end of this section that $J_{m}(x)$ in (3.3) satisfies (3.2).

The following recurrence formula holds.

$$
\begin{equation*}
J_{m}(x)=\frac{x}{2 m}\left[J_{m-1}(x)+J_{m+1}(x)\right], \quad m=1,2, \ldots \tag{3.4}
\end{equation*}
$$

Derivatives are given as (the differentiation formula)

$$
\begin{equation*}
J_{m}^{\prime}(x)=\frac{1}{2}\left[J_{m-1}(x)-J_{m+1}(x)\right], \quad m=0,1,2, \ldots \tag{3.5}
\end{equation*}
$$

By considering $[(3.5)+(m / x)(3.4)] x^{m}$ and $[(3.5)-(m / x)(3.4)] x^{-m}$, we have

$$
\begin{array}{r}
\frac{d}{d x}\left[x^{m} J_{m}(x)\right]=x^{m} J_{m-1}(x), \quad m=1,2, \cdots, \\
\frac{d}{d x}\left[x^{-m} J_{m}(x)\right]=-x^{-m} J_{m+1}(x), \quad m=0,1,2, \cdots \tag{3.7}
\end{array}
$$

Let $\left\{x_{n}\right\}$ be the nonnegative solutions of the equation

$$
\begin{equation*}
J_{m}\left(x_{n}\right) \cos \beta+x_{n} J_{m}^{\prime}\left(x_{n}\right) \sin \beta=0 \tag{3.8}
\end{equation*}
$$

where $m \geq 0$ and $0 \leq \beta \leq \pi / 2$.

[^1]

Fig. 3.1 Bessel functions $J_{0}(x), J_{1}(x)$, and $J_{2}(x)$ are plotted.

Then we have the following orthogonality relations.

$$
\begin{gather*}
\int_{0}^{1} J_{m}\left(x x_{n_{1}}\right) J_{m}\left(x x_{n_{2}}\right) x d x=0, \quad n_{1} \neq n_{2} \\
\int_{0}^{1} J_{m}\left(x x_{n}\right)^{2} x d x=\frac{1}{2} J_{m+1}\left(x_{n}\right)^{2}, \tag{3.9}\\
\int_{0}^{1} J_{m}\left(x x_{n}\right)^{2} x d x=\frac{x_{n}^{2}-m^{2}+\cot ^{2} \beta}{2 x_{n}^{2}} J_{m}\left(x_{n}\right)^{2}, \quad \text { if } \quad 0<\beta \leq \frac{\pi}{2}
\end{gather*}
$$

From the Sturm-Liouville theory, the first equation (orthogonality) holds. For the second and third equations, we multiply (3.1) by $2 \rho^{2} R^{\prime}$ and set $\lambda=x_{n}^{2}$.

$$
2 \rho^{2} R^{\prime} R^{\prime \prime}+2 \rho\left(R^{\prime}\right)^{2}+\left(x_{n}^{2} \rho^{2}-m^{2}\right) 2 R R^{\prime}=0
$$

We can rewrite this as

$$
\left[\left(\rho R^{\prime}\right)^{2}\right]^{\prime}+\left(x_{n}^{2} \rho^{2}-m^{2}\right)\left(R^{2}\right)^{\prime}=0
$$

By integrating both sides and using integration by parts, we get

$$
\left.\left(\rho R^{\prime}\right)^{2}\right|_{\rho=1}-\left.\left(\rho R^{\prime}\right)^{2}\right|_{\rho=0}+\left.\left(x_{n}^{2} \rho^{2}-m^{2}\right) R^{2}\right|_{0} ^{1}-\int_{0}^{1} 2 x_{n}^{2} \rho R^{2} d \rho=0
$$

Note that $R(\rho)=J_{m}\left(\rho x_{n}\right)$ and $R^{\prime}(\rho)=\left.x_{n} J_{m}^{\prime}(x)\right|_{x=\rho x_{n}}$. Hence $R(0)=J_{m}(0)=0$ ($m=1,2, \cdots$). We obtain

$$
\left[x_{n} J_{m}^{\prime}\left(x_{n}\right)\right]^{2}+\left(x_{n}^{2}-m^{2}\right) J_{m}\left(x_{n}\right)^{2}-2 x_{n}^{2} \int_{0}^{1} J_{m}\left(\rho x_{n}\right)^{2} \rho d \rho=0
$$

Therefore, when $\beta=0$ or $J_{m}\left(x_{n}\right)=0$, we have

$$
\int_{0}^{1} J_{m}\left(\rho x_{n}\right)^{2} \rho d \rho=\frac{x_{n}^{2}\left[J_{m}^{\prime}\left(x_{n}\right)\right]^{2}}{2 x_{n}^{2}}=\frac{\left[\frac{m}{x_{n}} J_{m}\left(x_{n}\right)-J_{m+1}\left(x_{n}\right)\right]^{2}}{2}=\frac{J_{m+1}\left(x_{n}\right)^{2}}{2}
$$

and when $0<\beta \leq \pi / 2$ or $J_{m}\left(x_{n}\right) \cot \beta+x_{n} J_{m}^{\prime}\left(x_{n}\right)=0$, we have

$$
\begin{aligned}
\int_{0}^{1} J_{m}\left(\rho x_{n}\right)^{2} \rho d \rho & =\frac{x_{n}^{2}\left[\frac{-1}{x_{n}} J_{m}\left(x_{n}\right) \cot \beta\right]^{2}+\left(x_{n}^{2}-m^{2}\right) J_{m}\left(x_{n}\right)^{2}}{2 x_{n}^{2}} \\
& =\frac{\left(x_{n}^{2}-m^{2}+\cot ^{2} \beta\right) J_{m}\left(x_{n}\right)^{2}}{2 x_{n}^{2}} .
\end{aligned}
$$

Let us consider the expansion of a piecewise smooth function $f(x), 0<x<1$, in a series of the form

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} A_{n} J_{m}\left(x x_{n}\right), \quad 0<x<1 \tag{3.10}
\end{equation*}
$$

where $\left\{x_{n}\right\}$ are the nonnegative solutions of $J_{m}(x) \cos \beta+x J_{m}^{\prime}(x) \sin \beta=0$. This is called a Fourier-Bessel expansion. By multiplying (3.10) by $J_{m}\left(x x_{n}\right)$ and integrating both sides, we obtain

$$
\begin{equation*}
A_{n}=\frac{\int_{0}^{1} f(x) J_{m}\left(x x_{n}\right) x d x}{\int_{0}^{1} J_{m}\left(x x_{n}\right)^{2} x d x}, \quad n=1,2, \cdots \tag{3.11}
\end{equation*}
$$

Theorem 1. Let $m \geq 0,0 \leq \beta \leq \pi / 2$, and let $\left\{x_{n}: n \geq 1\right\}$ be the nonnegative solutions of (3.8). If $f(x), 0<x<1$, is a piecewise smooth function, define $\left\{A_{n}: n \geq 1\right\}$ by (3.11). Then the series $\sum_{n=1}^{\infty} A_{n} J_{m}\left(x x_{n}\right)$ converges for each $x \in[0,1]$, and the sum is $\frac{1}{2}[f(x+0)+f(x-0)]$ for $0<x<1$.

Example 2. Let us compute the Fourier-Bessel expansion of the function $f(x)=1$, $0<x<1$, where $m=0$ and $\beta=0$. We have $1=\sum_{n=1}^{\infty} A_{n} J_{0}\left(x x_{n}\right)$, where $J_{0}\left(x_{n}\right)=0$ and

$$
\int_{0}^{1} x J_{0}\left(x x_{n}\right) d x=A_{n} \int_{0}^{1} J_{0}\left(x x_{n}\right)^{2} x d x, \quad n=1,2, \cdots
$$

Using (3.6) and (3.9), we obtain

$$
A_{n}=\frac{\frac{1}{x_{n}^{2}} \int_{0}^{x_{n}} t J_{0}(t) d t}{\int_{0}^{1} J_{0}\left(x x_{n}\right)^{2} x d x}=\frac{\left.\frac{1}{x_{n}^{2}} t J_{1}(t)\right|_{0} ^{x_{n}}}{\int_{0}^{1} J_{0}\left(x x_{n}\right)^{2} x d x}=\frac{\frac{1}{x_{n}} J_{1}\left(x_{n}\right)}{\frac{1}{2} J_{1}\left(x_{n}\right)^{2}}=\frac{2}{x_{n} J_{1}\left(x_{n}\right)}
$$

Therefore,

$$
1=2 \sum_{n=1}^{\infty} \frac{J_{0}\left(x x_{n}\right)}{x_{n} J_{1}\left(x_{n}\right)}
$$

Finally we show that Bessel functions (3.3) are solutions to Bessel's equation. Let $y=\sum_{n=0}^{\infty} a_{n} x^{n+\gamma}\left(a_{0} \neq 0, \gamma \geq 0\right)$ be a solution to (3.2). We obtain

$$
\left(\gamma^{2}-m^{2}\right) a_{0} x^{\gamma}+\left((1+\gamma)^{2}-m^{2}\right) a_{1} x^{\gamma+1}+\sum_{n=2}^{\infty}\left[\left((n+\gamma)^{2}-m^{2}\right) a_{n}+a_{n-2}\right] x^{n+\gamma}=0 .
$$

Hence,

$$
\gamma=m, \quad a_{1}=0, \quad a_{n}=\frac{-a_{n-2}}{n(n+2 m)}(n \geq 2) .
$$

We obtain

$$
y=a_{0} x^{m}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2(2+2 m) 4(4+2 m) \cdots 2 n(2 n+2 m)}\right]
$$

Let us choose $a_{0}=1 / m!2^{m}$. Then,

$$
\begin{equation*}
y(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+m}}{2^{m+2 n}(m+n)!n!} \tag{3.12}
\end{equation*}
$$

We rewrite (3.3) using $e^{i x \cos \theta}=\sum_{n=0}^{\infty}(i x \cos \theta)^{n} / n$! and introducing j as $n=$ $m+2 j$.

$$
J_{m}(x)=\frac{1}{2 \pi i^{m}} \sum_{n=0}^{\infty} \frac{(i x)^{n}}{n!} \int_{-\pi}^{\pi} \cos ^{n} \theta e^{-i m \theta} d \theta
$$

The integral is nonzero only for $n=m, m+2, m+4, \ldots$. We introduce $j(n=m+$ $2 j$).

$$
\begin{array}{r}
J_{m}(x)=\frac{1}{2 \pi i^{m}} \sum_{j=0}^{\infty} \frac{(i x)^{m+2 j}}{(m+2 j)!} \int_{-\pi}^{\pi} \cos ^{m+2 j} \theta e^{-i m \theta} d \theta \\
=\frac{1}{i^{m}} \sum_{j=0}^{\infty} \frac{(i x)^{m+2 j}}{(m+2 j)!} \frac{1}{2^{m+2 j}}\binom{m+2 j}{j}=\frac{1}{i^{m}} \sum_{j=0}^{\infty} \frac{(i x)^{m+2 j}}{2^{m+2 j}(m+j)!j!}=(3.12) .
\end{array}
$$

The vibrating drumhead ${ }^{3}$

Let us consider small transverse vibrations of a circular membrane.

$$
\left\{\begin{aligned}
u_{t t}=c^{2} \nabla^{2} u=c^{2}\left(u_{\rho \rho}+\frac{1}{\rho} u_{\rho}+\frac{1}{\rho^{2}} u_{\varphi \varphi}\right), & 0 \leq \rho<a, \quad t>0 \\
u(\rho, \varphi, t)=0, & \rho=a, \quad t>0 \\
u(\rho, \varphi, 0)=1, \quad u_{t}(\rho, \varphi, 0)=0, & 0 \leq \rho<a
\end{aligned}\right.
$$

where $c^{2}=T_{0} / \rho$ (cf. Chapter 2).
We look for separated solutions in the form

$$
u(\rho, \varphi, t)=R(\rho) \Phi(\varphi) T(t)
$$

By introducing separation constants as $-\lambda=\left(1 / c^{2}\right) T^{\prime \prime} / T$ and $-\mu=\Phi^{\prime \prime} / \Phi$, we obtain

$$
\begin{array}{r}
\Phi^{\prime \prime}(\varphi)+\mu \Phi(\varphi)=0, \quad \Phi(-\pi)=\Phi(\pi), \quad \Phi^{\prime}(-\pi)=\Phi^{\prime}(\pi) \\
R^{\prime \prime}(\rho)+\frac{1}{\rho} R^{\prime}(\rho)+\left(\lambda-\frac{\mu}{\rho^{2}}\right) R(\rho)=0, \quad R(a)=0 \\
T^{\prime \prime}(t)+\lambda c^{2} T(t)=0 \tag{3.15}
\end{array}
$$

In (3.13), nontrivial solutions are obtained when (i) $\mu>0, \sqrt{\mu}=1,2, \cdots$, and (ii) $\mu=0$:

$$
\Phi(\varphi)=A \cos m \varphi+B \sin m \varphi, \quad m=0,1,2, \cdots
$$

With $\mu=m^{2}(m=0,1,2, \cdots)$, we obtain $R(\rho)=J_{m}(\rho \sqrt{\lambda})$. For $R(a)=0$, we obtain $\sqrt{\lambda}=x_{n}^{(m)} / a$ where $x_{n}^{(m)}>0, J_{m}\left(x_{n}^{(m)}\right)=0$. The separated solutions are obtained as

$$
\begin{equation*}
u(\rho, \varphi, t)=J_{m}\left(\frac{\rho x_{n}^{(m)}}{a}\right)(A \cos m \varphi+B \sin m \varphi)\left(\tilde{A} \cos \frac{c t x_{n}^{(m)}}{a}+\tilde{B} \sin \frac{c t x_{n}^{(m)}}{a}\right) \tag{3.16}
\end{equation*}
$$

We will now take the initial conditions into account. The general solution is given as a linear combination (superposition) of (3.16). To satisfy $u_{t}(\rho, \varphi, 0)=0$, we set $\tilde{B}=0$. Now the solution is written as
$u(\rho, \varphi, t)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty}\left\{\left[A_{m n} J_{m}\left(\frac{\rho x_{n}^{(m)}}{a}\right)\right] \cos m \varphi+\left[B_{m n} J_{m}\left(\frac{\rho x_{n}^{(m)}}{a}\right)\right] \sin m \varphi\right\} \cos \frac{c t x_{n}^{(m)}}{a}$.
Consider the Fourier series $u(\rho, \varphi, 0)=1=A_{0}+\sum_{m=1}^{\infty} A_{m} \cos (m x)+B_{m} \sin (m x)$. We can readily find $A_{0}=1, \quad A_{m}=B_{m}=0 \quad(m \geq 1)$. (Of course we can also obtain them as $A_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} 1 d x, A_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos (m x) d x$, and $B_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin (m x) d x$.) Therefore,

[^2]$$
A_{m n}=B_{m n}=0, \quad \text { for } \quad m \geq 1,
$$
and
$$
u(\rho, \varphi, t)=\sum_{n=1}^{\infty} A_{0 n} J_{0}\left(\frac{\rho x_{n}^{(0)}}{a}\right) \cos \frac{c t x_{n}^{(0)}}{a}
$$

In Example 2, we calculated the Fourier-Bessel expansion $1=2 \sum_{n=1}^{\infty} \frac{J_{0}\left(x x_{n}^{(0)}\right)}{x_{n}^{(0)} J_{1}\left(x_{n}^{(0)}\right)}$. By comparison, finally we obtain

$$
u(\rho, \varphi, t)=2 \sum_{n=1}^{\infty} \frac{1}{x_{n}^{(0)} J_{1}\left(x_{n}^{(0)}\right)} J_{0}\left(\frac{\rho x_{n}^{(0)}}{a}\right) \cos \frac{c t x_{n}^{(0)}}{a}
$$

Heat flow in the infinite cylinder ${ }^{4}$

Let us consider the heat transfer in the infinite cylinder $0 \leq \rho<\rho_{\max }$. We will solve the heat equation in polar coordinates

$$
\left\{\begin{aligned}
u_{t}=K \nabla^{2} u, & t>0, \quad 0 \leq \rho<\rho_{\max }, \quad-\pi \leq \varphi \leq \pi \\
u\left(\rho_{\max }, \varphi, t\right)=T_{1}, & t>0, \quad-\pi \leq \varphi \leq \pi \\
u(\rho, \varphi, 0)=T_{2}, & 0 \leq \rho<\rho_{\max }, \quad-\pi \leq \varphi \leq \pi
\end{aligned}\right.
$$

where T_{1} and T_{2} are positive constants.

Step 1

To find the steady-state solution, we try $U(\rho)$ because the b. c. is independent of φ.

$$
K \nabla^{2} U=K\left(\frac{\partial^{2} U}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial U}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} U}{\partial \varphi^{2}}\right)=K\left(U^{\prime \prime}+\frac{1}{\rho} U^{\prime}\right)=0
$$

The general solution is obtained as

$$
U(\rho)=A+B \ln \rho .
$$

Let us exclude the second term and set $B=0$ (otherwise $U(0)$ diverges and the initial condition in Step 2 will also diverge). To satisfy $U\left(\rho_{\max }\right)=T_{1}$, we choose $A=T_{1}$. We thus obtain

$$
U(\rho)=T_{1}
$$

[^3]
Step 2

Define $v(\rho, \varphi, t)=u(\rho, \varphi, t)-U(\rho)$. We have

$$
\left\{\begin{aligned}
v_{t}=K \nabla^{2} v, & t>0, \quad 0 \leq \rho<\rho_{\max }, \quad-\pi \leq \varphi \leq \pi \\
v\left(\rho_{\max }, \varphi, t\right)=0, & t>0, \quad-\pi \leq \varphi \leq \pi \\
v(\rho, \varphi, 0)=T_{2}-U(\rho), & 0 \leq \rho<\rho_{\max }, \quad-\pi \leq \varphi \leq \pi
\end{aligned}\right.
$$

Step 3

Using separation of variables with $u(\rho, \varphi, t)=R(\rho) \Phi(\varphi) T(t)$, we obtain

$$
u(\rho, \varphi, t)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\frac{\rho x_{n}^{(m)}}{\rho_{\max }}\right)\left(A_{m n} \cos m \varphi+B_{m n} \sin m \varphi\right) \exp \left[-\frac{\left(x_{n}^{(m)}\right)^{2} K t}{\rho_{\max }^{2}}\right]
$$

Noting that $1=2 \sum_{n=1}^{\infty} \frac{J_{0}\left(x x_{n}\right)}{x_{n} J_{1}\left(x_{n}\right)}\left(0<x<1, J_{0}\left(x_{n}\right)=0\right)$, the solution is obtained as

$$
u(\rho, \varphi, t)=T_{1}+\sum_{n=1}^{\infty} A_{n} J_{0}\left(\frac{\rho x_{n}}{\rho_{\max }}\right) \exp \left[-\frac{x_{n}^{2} K t}{\rho_{\max }^{2}}\right]
$$

where $A_{n}=\frac{2\left(T_{2}-T_{1}\right)}{x_{n} J_{1}\left(x_{n}\right)}, J_{0}\left(x_{n}\right)=0, n=1,2, \cdots$.

[^0]: Winter 2014 Math 454 Sec 2
 Boundary Value Problems for Partial Differential Equations
 Manabu Machida (University of Michigan)
 ${ }^{1}$ This section corresponds to $\S 3.1$ of the textbook.

[^1]: ${ }^{2}$ This section corresponds to $\S 3.2$ of the textbook.

[^2]: ${ }^{3}$ This section corresponds to $\S 3.3$ of the textbook.

[^3]: ${ }^{4}$ This section corresponds to $\S 3.4$ of the textbook.

