
Chapter 3

PDEs in cylindrical coordinates

Laplace’s equation and applications 1

In cylindrical coordinates we use ρ ,ϕ,z instead of x,y,z:

x = ρ cosϕ, y = ρ sinϕ, z = z.

In rectangular coordinates the Laplacian was given by ∆ = ∂ 2
x + ∂ 2

y + ∂ 2
z . Here we

will compute the Laplacian in cylindrical coordinates.

For a function u(ρ ,ϕ,z) we have















ux =
∂u

∂x
=

∂u

∂ρ

∂ρ

∂x
+

∂u

∂ϕ

∂ϕ

∂x
= cosϕ

∂u

∂ρ
− sinϕ

ρ

∂u

∂ϕ
,

uy =
∂u

∂y
=

∂u

∂ρ

∂ρ

∂y
+

∂u

∂ϕ

∂ϕ

∂y
= sinϕ

∂u

∂ρ
+

cosϕ

ρ

∂u

∂ϕ
,

where we used

ρ2 = x2+y2 ⇒ 2ρ
∂ρ

∂x
= 2x, 2ρ

∂ρ

∂y
= 2y ⇒ ∂ρ

∂x
=

x

ρ
= cosϕ,

∂ρ

∂y
=

y

ρ
= sinϕ,

y= ρ sinϕ ⇒ 0=
∂ρ

∂x
sinϕ+ρ cosϕ

∂ϕ

∂x
= cosϕ sinϕ+ρ cosϕ

∂ϕ

∂x
⇒ ∂ϕ

∂x
=− sinϕ

ρ
,

and

x= ρ cosϕ ⇒ 0=
∂ρ

∂y
cosϕ−ρ sinϕ

∂ϕ

∂y
= sinϕ cosϕ−ρ sinϕ

∂ϕ

∂y
⇒ ∂ϕ

∂y
=

cosϕ

ρ
.

Thus the second derivatives are obtained as


















∂ 2u

∂x2
= cos2 ϕ

∂ 2u

∂ρ2
+

2cosϕ sinϕ

ρ2

∂u

∂ϕ
− 2sinϕ cosϕ

ρ

∂ 2u

∂ρ∂ϕ
+

sin2 ϕ

ρ

∂u

∂ρ
+

sin2 ϕ

ρ2

∂ 2u

∂ϕ2
,

∂ 2u

∂y2
= sin2 ϕ

∂ 2u

∂ρ2
− 2sinϕ cosϕ

ρ2

∂u

∂ϕ
+

2sinϕ cosϕ

ρ

∂ 2u

∂ρ∂ϕ
+

cos2 ϕ

ρ

∂u

∂ρ
+

cos2 ϕ

ρ2

∂ 2u

∂ϕ2
.
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1 This section corresponds to §3.1 of the textbook.
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Hence,
∂ 2u

∂x2
+

∂ 2u

∂y2
=

∂ 2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2

∂ 2u

∂ϕ2
.

The Laplacian is obtained as

∆u = ∇2u =
∂ 2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2

∂ 2u

∂ϕ2
+

∂ 2u

∂ z2
.

Example 1. Let us find separated solutions of Laplace’s equation ∇2u = 0 in cylin-

drical coordinates, defined for ρ > 0, −π ≤ ϕ ≤ π . Assume that u is smooth and is

independent of z.

By plugging u(ρ ,ϕ) = R(ρ)Φ(ϕ) into ∇2u = 0, we obtain

0 = uρρ +
1

ρ
uρ +

1

ρ2
uϕϕ = R′′Φ +

1

ρ
R′Φ +

1

ρ2
RΦ ′′.

Dividing by RΦ and multiplying by ρ2, we have

0 = ρ2 R′′+(1/ρ)R′

R
+

Φ ′′

Φ
.

By introducing the separation constant λ , we have







Φ ′′+λΦ = 0, Φ(−π) = Φ(π), Φ ′(−π) = Φ ′(π),

R′′+
1

ρ
R′− λ

ρ2
R = 0.

Note that λ and Φ are an eigenvalue and an eigenfunction of the Sturm-Liouville

problem: λ = m2 and Φ(ϕ) = Am cosmϕ +Bm sinmϕ (m = 0,1,2, . . . ). Separated

solutions are obtained as

u(ρ ,ϕ) =











ρm (Am cosmϕ +Bm sinmϕ) , m = 1,2, . . . ,

A0 +B0 lnρ , m = 0,

ρ−m (Cm cosmϕ +Dm sinmϕ) , m = 1,2, . . . .

In the last two cases we have |u| → ∞ as ρ → 0 and u is not smooth. Therefore,

u(ρ ,ϕ) = ρm (Am cosmϕ +Bm sinmϕ) , m = 1,2, . . . .
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Bessel functions 2

Let us begin with

R′′(ρ)+
1

ρ
R′(ρ)+

(

λ − m2

ρ2

)

R(ρ) = 0. (3.1)

Let x = ρ
√

λ and y(x) = R(ρ). Then, (3.1) becomes

y′′+
1

x
y′+

(

1− m2

x2

)

y = 0. (3.2)

Equation (3.2) is Bessel’s equation (recall Example 8 in Chapter 2). Therefore

y(x) = Jm(x) or

R(ρ) = Jm(ρ
√

λ ).

Definition 1.

Jm(x) =
1

2πim

∫ π

−π
eixcosθ e−imθ dθ , m = 0,1,2, . . . . (3.3)

Bessel functions Jm(x) behave as shown in Fig. 3.1. We will show in the end of

this section that Jm(x) in (3.3) satisfies (3.2).

The following recurrence formula holds.

Jm(x) =
x

2m
[Jm−1(x)+ Jm+1(x)] , m = 1,2, . . . . (3.4)

Derivatives are given as (the differentiation formula)

J′m(x) =
1

2
[Jm−1(x)− Jm+1(x)] , m = 0,1,2, . . . . (3.5)

By considering [(3.5)+(m/x)(3.4)]xm and [(3.5)−(m/x)(3.4)]x−m, we have

d

dx
[xmJm(x)] = xmJm−1(x), m = 1,2, · · · , (3.6)

d

dx

[

x−mJm(x)
]

=−x−mJm+1(x), m = 0,1,2, · · · . (3.7)

Let {xn} be the nonnegative solutions of the equation

Jm(xn)cosβ + xnJ′m(xn)sinβ = 0, (3.8)

where m ≥ 0 and 0 ≤ β ≤ π/2.

2 This section corresponds to §3.2 of the textbook.
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Fig. 3.1 Bessel functions J0(x), J1(x), and J2(x) are plotted.

Then we have the following orthogonality relations.



































∫ 1

0
Jm(xxn1

)Jm(xxn2
)xdx = 0, n1 6= n2,

∫ 1

0
Jm(xxn)

2xdx =
1

2
Jm+1(xn)

2, if β = 0,

∫ 1

0
Jm(xxn)

2xdx =
x2

n −m2 + cot2 β

2x2
n

Jm(xn)
2, if 0 < β ≤ π

2
.

(3.9)

From the Sturm-Liouville theory, the first equation (orthogonality) holds. For the

second and third equations, we multiply (3.1) by 2ρ2R′ and set λ = x2
n.

2ρ2R′R′′+2ρ(R′)2 +(x2
nρ2 −m2)2RR′ = 0.

We can rewrite this as

[

(ρR′)2
]′
+(x2

nρ2 −m2)(R2)′ = 0.
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By integrating both sides and using integration by parts, we get

(ρR′)2
∣

∣

ρ=1
− (ρR′)2

∣

∣

ρ=0
+ (x2

nρ2 −m2)R2
∣

∣

1

0
−
∫ 1

0
2x2

nρR2dρ = 0.

Note that R(ρ) = Jm(ρxn) and R′(ρ) = xnJ′m(x)|x=ρxn . Hence R(0) = Jm(0) = 0

(m = 1,2, · · · ). We obtain

[

xnJ′m(xn)
]2
+(x2

n −m2)Jm(xn)
2 −2x2

n

∫ 1

0
Jm(ρxn)

2ρdρ = 0.

Therefore, when β = 0 or Jm(xn) = 0, we have

∫ 1

0
Jm(ρxn)

2ρdρ =
x2

n [J
′
m(xn)]

2

2x2
n

=

[

m
xn

Jm(xn)− Jm+1(xn)
]2

2
=

Jm+1(xn)
2

2
,

and when 0 < β ≤ π/2 or Jm(xn)cotβ + xnJ′m(xn) = 0, we have

∫ 1

0
Jm(ρxn)

2ρdρ =
x2

n

[

−1
xn

Jm(xn)cotβ
]2

+(x2
n −m2)Jm(xn)

2

2x2
n

=
(x2

n −m2 + cot2 β )Jm(xn)
2

2x2
n

.

Let us consider the expansion of a piecewise smooth function f (x), 0 < x < 1, in

a series of the form

f (x) =
∞

∑
n=1

AnJm(xxn), 0 < x < 1, (3.10)

where {xn} are the nonnegative solutions of Jm(x)cosβ + xJ′m(x)sinβ = 0. This is

called a Fourier-Bessel expansion. By multiplying (3.10) by Jm(xxn) and integrating

both sides, we obtain

An =

∫ 1
0 f (x)Jm(xxn)xdx
∫ 1

0 Jm(xxn)2xdx
, n = 1,2, · · · . (3.11)

Theorem 1. Let m ≥ 0, 0 ≤ β ≤ π/2, and let {xn : n ≥ 1} be the nonnegative

solutions of (3.8). If f (x), 0 < x < 1, is a piecewise smooth function, define

{An : n ≥ 1} by (3.11). Then the series ∑∞
n=1 AnJm(xxn) converges for each

x ∈ [0,1], and the sum is 1
2
[ f (x+0)+ f (x−0)] for 0 < x < 1.
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Example 2. Let us compute the Fourier-Bessel expansion of the function f (x) = 1,

0 < x < 1, where m = 0 and β = 0. We have 1 = ∑∞
n=1 AnJ0(xxn), where J0(xn) = 0

and
∫ 1

0
xJ0(xxn)dx = An

∫ 1

0
J0(xxn)

2xdx, n = 1,2, · · · .

Using (3.6) and (3.9), we obtain

An =

1
x2

n

∫ xn
0 tJ0(t)dt

∫ 1
0 J0(xxn)2xdx

=

1
x2

n
tJ1(t)

∣

∣

∣

xn

0
∫ 1

0 J0(xxn)2xdx
=

1
xn

J1(xn)
1
2
J1(xn)2

=
2

xnJ1(xn)
.

Therefore,

1 = 2
∞

∑
n=1

J0(xxn)

xnJ1(xn)
.

Finally we show that Bessel functions (3.3) are solutions to Bessel’s equation.

Let y = ∑∞
n=0 anxn+γ (a0 6= 0, γ ≥ 0) be a solution to (3.2). We obtain

(

γ2 −m2
)

a0xγ +
(

(1+ γ)2 −m2
)

a1xγ+1+
∞

∑
n=2

[(

(n+ γ)2 −m2
)

an +an−2

]

xn+γ = 0.

Hence,

γ = m, a1 = 0, an =
−an−2

n(n+2m)
(n ≥ 2).

We obtain

y = a0xm

[

1+
∞

∑
n=1

(−1)nx2n

2(2+2m)4(4+2m) · · ·2n(2n+2m)

]

.

Let us choose a0 = 1/m!2m. Then,

y(x) =
∞

∑
n=0

(−1)nx2n+m

2m+2n(m+n)!n!
. (3.12)

We rewrite (3.3) using eixcosθ = ∑∞
n=0(ixcosθ)n/n! and introducing j as n =

m+2 j.

Jm(x) =
1

2πim

∞

∑
n=0

(ix)n

n!

∫ π

−π
cosn θe−imθ dθ .

The integral is nonzero only for n = m, m+2, m+4, . . . . We introduce j (n = m+
2 j).

Jm(x) =
1

2πim

∞

∑
j=0

(ix)m+2 j

(m+2 j)!

∫ π

−π
cosm+2 j θe−imθ dθ

=
1

im

∞

∑
j=0

(ix)m+2 j

(m+2 j)!

1

2m+2 j

(

m+2 j

j

)

=
1

im

∞

∑
j=0

(ix)m+2 j

2m+2 j(m+ j)! j!
= (3.12).
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The vibrating drumhead 3

Let us consider small transverse vibrations of a circular membrane.



















utt = c2∇2u = c2

(

uρρ +
1

ρ
uρ +

1

ρ2
uϕϕ

)

, 0 ≤ ρ < a, t > 0,

u(ρ ,ϕ, t) = 0, ρ = a, t > 0,

u(ρ ,ϕ,0) = 1, ut(ρ ,ϕ,0) = 0, 0 ≤ ρ < a.

where c2 = T0/ρ (cf. Chapter 2).

We look for separated solutions in the form

u(ρ ,ϕ, t) = R(ρ)Φ(ϕ)T (t).

By introducing separation constants as −λ = (1/c2)T ′′/T and −µ = Φ ′′/Φ , we

obtain

Φ ′′(ϕ)+µΦ(ϕ) = 0, Φ(−π) = Φ(π), Φ ′(−π) = Φ ′(π), (3.13)

R′′(ρ)+
1

ρ
R′(ρ)+

(

λ − µ

ρ2

)

R(ρ) = 0, R(a) = 0, (3.14)

T ′′(t)+λc2T (t) = 0. (3.15)

In (3.13), nontrivial solutions are obtained when (i) µ > 0,
√

µ = 1,2, · · · , and (ii)

µ = 0:

Φ(ϕ) = Acosmϕ +Bsinmϕ, m = 0,1,2, · · · .
With µ =m2 (m= 0,1,2, · · · ), we obtain R(ρ) = Jm(ρ

√
λ ). For R(a) = 0, we obtain√

λ = x
(m)
n /a where x

(m)
n > 0, Jm(x

(m)
n ) = 0. The separated solutions are obtained as

u(ρ ,ϕ, t) = Jm

(

ρx
(m)
n

a

)

(Acosmϕ +Bsinmϕ)

(

Ãcos
ctx

(m)
n

a
+ B̃sin

ctx
(m)
n

a

)

.

(3.16)

We will now take the initial conditions into account. The general solution is given

as a linear combination (superposition) of (3.16). To satisfy ut(ρ ,ϕ,0) = 0, we set

B̃ = 0. Now the solution is written as

u(ρ ,ϕ, t)=
∞

∑
m=0

∞

∑
n=1

{[

AmnJm

(

ρx
(m)
n

a

)]

cosmϕ +

[

BmnJm

(

ρx
(m)
n

a

)]

sinmϕ

}

cos
ctx

(m)
n

a
.

Consider the Fourier series u(ρ ,ϕ,0) = 1 = A0 +∑∞
m=1 Am cos(mx)+Bm sin(mx).

We can readily find A0 = 1, Am = Bm = 0 (m≥ 1). (Of course we can also ob-

tain them as A0 =
1

2π

∫ π
−π 1dx, Am = 1

π

∫ π
−π cos(mx)dx, and Bm = 1

π

∫ π
−π sin(mx)dx.)

Therefore,

3 This section corresponds to §3.3 of the textbook.
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Amn = Bmn = 0, for m ≥ 1,

and

u(ρ ,ϕ, t) =
∞

∑
n=1

A0nJ0

(

ρx
(0)
n

a

)

cos
ctx

(0)
n

a
.

In Example 2, we calculated the Fourier-Bessel expansion 1 = 2∑∞
n=1

J0(xx
(0)
n )

x
(0)
n J1(x

(0)
n )

. By

comparison, finally we obtain

u(ρ ,ϕ, t) = 2
∞

∑
n=1

1

x
(0)
n J1(x

(0)
n )

J0

(

ρx
(0)
n

a

)

cos
ctx

(0)
n

a
.

Heat flow in the infinite cylinder 4

Let us consider the heat transfer in the infinite cylinder 0 ≤ ρ < ρmax. We will solve

the heat equation in polar coordinates











ut = K∇2u, t > 0, 0 ≤ ρ < ρmax, −π ≤ ϕ ≤ π,

u(ρmax,ϕ, t) = T1, t > 0, −π ≤ ϕ ≤ π,

u(ρ ,ϕ,0) = T2, 0 ≤ ρ < ρmax, −π ≤ ϕ ≤ π,

where T1 and T2 are positive constants.

Step 1

To find the steady-state solution, we try U(ρ) because the b. c. is independent of ϕ .

K∇2U = K

(

∂ 2U

∂ρ2
+

1

ρ

∂U

∂ρ
+

1

ρ2

∂ 2U

∂ϕ2

)

= K

(

U ′′+
1

ρ
U ′
)

= 0.

The general solution is obtained as

U(ρ) = A+B lnρ .

Let us exclude the second term and set B = 0 (otherwise U(0) diverges and the

initial condition in Step 2 will also diverge). To satisfy U(ρmax) = T1, we choose

A = T1. We thus obtain

U(ρ) = T1.

4 This section corresponds to §3.4 of the textbook.
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Step 2

Define v(ρ ,ϕ, t) = u(ρ ,ϕ, t)−U(ρ). We have











vt = K∇2v, t > 0, 0 ≤ ρ < ρmax, −π ≤ ϕ ≤ π,

v(ρmax,ϕ, t) = 0, t > 0, −π ≤ ϕ ≤ π,

v(ρ ,ϕ,0) = T2 −U(ρ), 0 ≤ ρ < ρmax, −π ≤ ϕ ≤ π,

Step 3

Using separation of variables with u(ρ ,ϕ, t) = R(ρ)Φ(ϕ)T (t), we obtain

u(ρ ,ϕ, t) =
∞

∑
m=0

∞

∑
n=1

Jm

(

ρx
(m)
n

ρmax

)

(Amn cosmϕ +Bmn sinmϕ)exp






−

(

x
(m)
n

)2

Kt

ρ2
max






.

Noting that 1 = 2∑∞
n=1

J0(xxn)
xnJ1(xn)

(0 < x < 1, J0(xn) = 0), the solution is obtained as

u(ρ ,ϕ, t) = T1 +
∞

∑
n=1

AnJ0

(

ρxn

ρmax

)

exp

[

−x2
nKt

ρ2
max

]

,

where An =
2(T2−T1)
xnJ1(xn)

, J0(xn) = 0, n = 1,2, · · · .


