
Chapter 2

PDEs in rectangular coordinates

The heat equation 1

Let us consider the rate q(x, t) of heat flow at x = (x,y,z). This q is called the heat

flux (the heat current density)2. Fourier’s law of heat conduction states that

q =−k∇u,

where k is the thermal conductivity of the material3 and u(x, t) is the temperature

measured at the point x at the time t.

Definition 1. Consider a bounded domain R with boundary ∂R. A unit vector n(x)
(x ∈ ∂R) is called the unit outward normal vector or the outer unit normal vector if

the vector is orthogonal to the tangent vector at x ∈ ∂R (i.e., n is perpendicular to

the boundary ∂R) and is pointing outward.

Suppose heat is generated by internal sources at rate s(x, t). Consider the heat Q

that enters region R within the time interval (t, t +∆t).

Q =

(

−
∫

∂R
q ·ndS+

∫

R
sdV

)

∆t,

where n is the unit outward normal vector. This Q raises the temperature by ut∆t:

Q =
∫

R
cρutdV ∆t,

where c is the heat capacity per unit mass and ρ is the mass density of the material4.

Therefore, we obtain

∫

R
cρutdV =−

∫

∂R
q ·ndS+

∫

R
sdV.
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1 This section corresponds to §2.1 of the textbook.
2 In SI units, [q] = J/s

m2 .
3 In SI units, [k] = J/s

mK
.

4 In SI units, [c] = J
kgK

and [ρ ] = kg

m3 .
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Note that by divergence theorem5

∫

∂R
q ·ndS =

∫

R
∇ ·qdV,

and the Laplacian ∆ = ∇2 = ∂ 2
x +∂ 2

y +∂ 2
z . We thus obtain the continuity equation,

which describes the conservation of energy:

∂ (cρu)

∂ t
+∇ ·q = s.

We introduce the thermal diffusivity K = k/cρ and define r(x, t) = s(x, t)/cρ .

We obtain the heat equation as

ut = K∆u+ r. (2.1)

Equation (2.1) is also called the diffusion equation. Consider diffusion of the density

u of milk dropped in coffee. Let q be the flux of the milk. With the continuity

equation ∂u
∂ t
+∇ ·q= 0 and Fick’s law q=−D∇u, where D is the diffusion constant.

We obtain6 ut = D∆u.

Steady state

If u is independent of t (ut = 0), then ∆u = −r/K becomes Poisson’s equation.

Furthermore if s = 0, then the heat equation becomes ∆u = 0, which is Laplace’s

equation.

Example 1. Let us find the steady-state solution of the heat equation ut = K∇2u in

the slab 0 < z < L with the boundary conditions u(x,y,0) = T1 and u(x,y,L) = T2.

The steady-state solution satisfies ∇2u= 0. We can write u(x,y,z)=U(z). Hence,

the general solution is obtained as U = A+Bz with constants A,B. We obtain A = T1

and B = (T2 −T1)/L. Finally, we obtain

u(x) = T1

(

1− z

L

)

+T2
z

L
.

5 For example, Math 255.
6 In general the diffusion coefficient D depends on x and ut = ∇ · (D(x)∇u).
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Homogeneous boundary conditions on a slab 7

There are three ways to impose boundary conditions.

Dirichlet boundary condition: The temperature u on the boundary is given.

u = g(x), x ∈ ∂Ω .

Neumann boundary condition: The heat flux q = −k∇u across the bound-

ary is given.

n ·∇u = g(x), x ∈ ∂Ω .

Robin boundary condition: We take a linear combination of the above two

boundary conditions. Newton’s law of cooling n ·∇u = h(T − u) (h > 0)

has this form.

a(x)u+b(x)n ·∇u = g(x), x ∈ ∂Ω .

When g = 0, we say the boundary condition is homogeneous (the PDE might not be

homogeneous).

Let us consider homogeneous boundary conditions. In the case of a slab 0 < z <
L, the condition at x = 0 is expressed as

u(0, t)cosα −Luz(0, t)sinα = 0, 0 ≤ α < π. (2.2)

For α = 0, we have u(0, t) = 0. For α = π/2, we have uz(0, t) = −n ·∇u(0, t) =
0. For α 6= 0 we can rewrite (2.2) as u(0, t)ccotα − cLuz(0, t) = 0, where c is a

constant. By setting a(0) = ccotα , b(0) = cL, we have a(0)u(0, t)+b(0)n ·∇u = 0.

Therefore by (2.2) we can express any boundary condition at x = 0. Thus we can

write the heat equation in the slab 0 < z < L as follows.



















ut = Kuzz, 0 < z < L, t > 0,

ucosα −Luz sinα = 0, z = 0, t > 0,

ucosβ +Luz sinβ = 0, z = L, t > 0,

u = f (z), 0 < z < L, t = 0,

where f (z), 0 < z < L is a piecewise smooth function.

Let us solve the heat equation in a simple case of α = β = 0. The separated

solution is written as u(z, t) = φ(z)T (t). Thus we obtain

T ′(t)+λKT (t) = 0, φ ′′(z)+λφ(z) = 0.

7 This section corresponds to §2.2 of the textbook.
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The boundary conditions are written as

φ(0) = φ(L) = 0.

We obtain

T (t) = e−λKt , φ = Asin(
√

λ z)+Bcos(
√

λ z), λ > 0.

By plugging φ =Asin(
√

λ z)+Bcos(
√

λ z) into the boundary conditions, we find

that B = 0 and
√

λL is an integer multiple of π . Therefore we obtain

φ(z) = φn(z) = sin(
√

λnz), λn =
(nπ

L

)2

, n = 1,2, . . . ,

where we set the arbitrary constant in φn(z) to be 1 (recall we will take a superposi-

tion). Thus the separated solutions are obtained as

u(z, t) = φn(z)e
−λnKt , n = 1,2, . . . .

If no initial condition is given, the above separated solutions are the solutions

to the problem. Here, however, we have an initial condition.

Let us consider the initial condition. We express the solution as

u(z, t) =
∞

∑
n=1

Cnφn(z)e
−λnKt ,

where Cn are constants. Since f is piecewise smooth, we can write f (z)=∑∞
n=1 Bnφn(z),

0 < z < L, with some coefficients Bn (Fourier sine series). This implies that Cn = Bn.

We obtain

u(z, t) =
∞

∑
n=1

Bnφn(z)e
−λnKt , 0 < z < L, t > 0. (2.3)

Example 2. The heat equation ut =Kuzz for 0< z< L, t > 0 with u(0, t)= u(L, t)= 0

and u(z,0) = 1 is solved as

u(z, t) =
∞

∑
n=1

Bn sin
nπz

L
e−(nπ/L)2Kt ,

where

Bn =
2

π

1− (−1)n

n
. (2.4)

As is mentioned above, Bn are coefficients of the Fourier sine series of f (z). We

can also compute Bn as follows. First we note the following orthogonality relations.

For n,m = 1,2, . . . , we have
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∫ L

0
φn(z)φm(z)dz =

∫ L

0
sin

nπz

L
sin

mπz

L
dz

=
1

2

∫ L

0

[

cos
(n−m)πz

L
− cos

(n+m)πz

L

]

dz,

=
L

2
δnm. (2.5)

Note that the interval for the integral is (0,L) instead of (−L,L). The next example

explains how Bn are computed using these orthogonality relations.

Example 3. Let us consider f (z) = 1, 0 < z < L. We write f (z) using unknown

constants Bn as

f (z) =
∞

∑
n=1

Bnφn(z).

By integrating both sides after multiplying φn(z), we obtain

∫ L

0
f (z)φn(z)dz =

∫ L

0

∞

∑
m=1

Bmφm(z)φn(z)dz.

The left-hand side is calculated as

LHS =

∫ L

0
sin

nπz

L
dz =

−1

nπ
cos

nπz

L

∣

∣

∣

L

0
=

L

nπ
(1− (−1)n) .

Using the orthogonality relations, the right-hand side is computed as

RHS =
∞

∑
m=1

Bm

∫ L

0
φm(z)φn(z)dz =

∞

∑
m=1

Bm

L

2
δnm =

L

2
Bn.

Therefore we obtain (2.4).

Orthogonal functions 8

Definition 2 (Inner product). We extend dot product ϕ ·ψ and define inner product

as

〈ϕ,ψ〉=
∫ b

a
ϕ(x)ψ(x)dx.

Sometimes the inner product is defined as follows. We can have a weight function,

and the weighted inner product is given by

〈ϕ,ψ〉ρ =
∫ b

a
ϕ(x)ψ(x)ρ(x)dx,

8 This section corresponds to §0.3 of the textbook.
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where ρ(x)> 0 is a weight function. For complex functions, we can write the com-

plex inner product as

〈ϕ,ψ〉=
∫ b

a
ϕ(x)ψ(x)dx.

Here ψ is the complex conjugate of ψ (ψ(x) = f (x)− ig(x) when ψ = f + ig).

Definition 3 (Orthogonal). Two functions ϕ,ψ are said to be orthogonal on [a,b]
if 〈ϕ,ψ〉= 0.

Example 4. The functions ϕ(x) = sinx and ψ(x) = cosx are orthogonal on [0,π].

Example 5. The set of functions sinx,sin2x, . . . ,sinNx is orthogonal on [0,π].

Example 6. Which of the following pairs of functions are orthogonal on the interval

0 ≤ x ≤ 1?

ϕ1 = sin2πx, ϕ2 = x, ϕ3 = cos2πx, ϕ4 = 1.

〈ϕ1,ϕ3〉= 0, 〈ϕ1,ϕ4〉= 0, 〈ϕ2,ϕ3〉= 0, 〈ϕ3,ϕ4〉= 0. All others are nonzero. There-

fore the pairs (ϕ1,ϕ3), (ϕ1,ϕ4), (ϕ2,ϕ3), and (ϕ3,ϕ4) are orthogonal.

Definition 4 (Norm). As follows we define norm, which is the “length” of a func-

tion.

‖ϕ‖= ‖ϕ‖L2(a,b) =
√

〈ϕ,ϕ〉.

We note that the norm is always nonnegative. The norm ||ϕ −ψ|| is the distance

between two functions ϕ and ψ .

Definition 5 (Projection). Let (ϕ1, . . . ,ϕN) be a set of orthogonal functions

with ||ϕi|| 6= 0. Let f (x) be a function. Then ĉ1ϕ1 + · · ·+ ĉNϕN with ĉi =
〈 f ,ϕi〉/||ϕi||2 is the projection of f onto (ϕ1, . . . ,ϕN). ĉi is called the ith

Fourier coefficient of f .

Note that the minimum of || f − (c1ϕ1 + · · ·+ cNϕN)|| is achieved when ci = ĉi.

Example 7. Find the projection of f (x) = 1 onto (ϕ1,ϕ2) = (sinx,sin2x) on the

interval 0 ≤ x ≤ π . By 〈 f ,ϕ1〉= 2, 〈 f ,ϕ2〉= 0, and ||ϕ1||2 = ||ϕ2||2 = π
2

, we obtain
4
π sinx.

Definition 6 (Orthonormal). The functions (ϕ1, . . . ,ϕN) are orthonormal if 〈ϕi,ϕ j〉=
δi j. Here δi j is the Kronecker delta (δi j = 0 if i 6= j and = 1 if i = j).
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Sturm-Liouville eigenvalue problems 9

We saw in (2.3) that the solution was given as a Fourier series with sine functions,

which are orthogonal to each other. Sometimes series with other functions appear.

In this section we will develop the general theory for such orthogonal functions.

Let us begin by
{

φ ′′(x)+λφ(x) = 0, x ∈ (0,L),

φ(0) = φ(L) = 0.
(2.6)

The nontrivial solutions10 to (2.6) are obtained as φ(x) = sin(
√

λx) with λ =
(nπ/L)2 (n = 1,2, . . . ). We call λ and φ an eigenvalue and an eigenfuction of the

Sturm-Liouville eigenvalue problem11.

In general an equation for φ is given on the interval (a,b) and boundary condi-

tions are given by

φ(a)cosα −Lφ ′(a)sinα = 0, φ(b)cosβ +Lφ ′(b)sinβ = 0, (2.7)

where L = b−a, and α,β ∈ [0,π) are some parameters. The most general form of

Sturm-Liouville problems is written as

[s(x)φ ′(x)]′+[λρ(x)−q(x)]φ(x) = 0, a < x < b, (2.8)

where ρ(x)> 0.

Theorem 1 (Orthogonality). Consider the Sturm-Liouville problem (2.8)

with the boundary conditions (2.7). Suppose that φ1(x),φ2(x) are nontrivial

solutions with different eigenvalues λ1 6= λ2. Then the eigenfunctions are or-

thogonal with respect to the weight function ρ(x), a < x < b:

∫ b

a
φ1(x)φ2(x)ρ(x)dx = 0.

If the two eigenfunctions belong to the same eigenvalue λ1 = λ2, then the

eigenfunctions must be proportional:

φ2(x) =Cφ1(x)

for some constant C.

9 This section corresponds to §1.6 of the textbook.
10 Obviously φ(x) = 0 is a solution to (2.6). This solution is called the trivial solution. Other

solutions are called nontrivial solutions.
11 Using φ ′′(x) ≈ [φ(x+∆x)−2φ(x)+φ(x−∆x)]/(∆x)2, we can write (2.6) as a matrix-vector

equation. Then λ becomes an eigenvalue of a matrix and φ becomes an eigenvector.
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Theorem 2. Let φ(x) ∈ C and s(x),ρ(x),q(x) ∈ R in (2.8). Then λ is a real

number.

Example 8 (Bessel functions). By setting s(x) = ρ(x) = xd−1, q(x) = µxd−3, and

λ = 1 with a = 0 and b = ∞, we obtain

φ ′′+(d −1)
φ ′

x
+
(

1− µ

x2

)

φ = 0,

where d is the dimension and µ is the angular index. In the case of d = 2 and µ =m2,

the function φ(x) = Jm(x) is called the Bessel function12. In the case of d = 3 and

µ = k(k+1) (k = 0,1,2, . . . ), the function φ(x) = jk(x) is called the spherical Bessel

function 13..

Example 9 (Legendre polynomials). By setting s(x) = 1 − x2, ρ(x) = 1, q(x) =
m2/s(x), and λ = k(k+1) (k = 0,1,2, . . . ) with a =−1 and b = 1, we obtain

(1− x2)φ ′′−2xφ ′+

(

k(k+1)− m2

1− x2

)

φ = 0.

The function φ(x) = Pm
k (x) is called the associated Legendre polynomial14. When

m = 0, the function Pk(x) is called the Legendre polynomial.

Example 10 (Hermite polynomials). By setting s(x) = ρ(x) = exp
(

−x2/2
)

,q(x) =
0,λ = n (n = 0,1,2, . . . ) with a =−∞ and b = ∞, we obtain

φ ′′− xφ ′+nφ = 0.

The function φ(x) = Hn(x) is called the Hermite polynomial15.

Proof (Theorem 1).

Let us begin with

[

s(x)φ ′
1(x)

]′
+[λ1ρ(x)−q(x)]φ1(x)= 0,

[

s(x)φ ′
2(x)

]′
+[λ2ρ(x)−q(x)]φ2(x)= 0.

(2.9)

We multiply the first equation by φ2(x) and the second equation by φ1(x), and inte-

grate them.

12 Bessel functions appear in §3.2 of the textbook.
13 spherical Bessel functions appear in §4.2 of the textbook.
14 Legendre polynomials and associated Legendre polynomials appear in §4.2 of the textbook.
15 Hermite polynomials appear in §5.2 of the textbook.
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













∫ b

a
φ2(x)

[

s(x)φ ′
1(x)

]′
dx+

∫ b

a
φ2(x) [λ1ρ(x)−q(x)]φ1(x)dx = 0,

∫ b

a
φ1(x)

[

s(x)φ ′
2(x)

]′
dx+

∫ b

a
φ1(x) [λ2ρ(x)−q(x)]φ2(x)dx = 0.

By integration by parts, we obtain















[

φ2(x)s(x)φ
′
1(x)

]b

a
−

∫ b

a
φ ′

2(x)s(x)φ
′
1(x)dx+

∫ b

a
φ2(x) [λ1ρ(x)−q(x)]φ1(x)dx = 0,

[

φ1(x)s(x)φ
′
2(x)

]b

a
−

∫ b

a
φ ′

1(x)s(x)φ
′
2(x)dx+

∫ b

a
φ1(x) [λ2ρ(x)−q(x)]φ2(x)dx = 0.

We subtract these equations. Noting that φ1(x) and φ2(x) satisfy (2.7), we have

[

φ2(x)s(x)φ
′
1(x)

]b

a
−
[

φ1(x)s(x)φ
′
2(x)

]b

a

= s(b)
[

φ2(b)φ
′
1(b)−φ1(b)φ

′
2(b)

]

− s(a)
[

φ2(a)φ
′
1(a)−φ1(a)φ

′
2(a)

]

= s(b)[0]− s(a)[0] = 0. (2.10)

Therefore, we obtain

(λ1 −λ2)
∫ b

a
φ1(x)φ2(x)ρ(x)dx = 0. (2.11)

Since λ1 6= λ2, this integral must be zero.

Next, let us suppose λ1 = λ2 = λ . We consider

ψ(x) =

{

φ2(a)φ1(x)−φ1(a)φ2(x), if α 6= 0,

φ ′
2(a)φ1(x)−φ ′

1(a)φ2(x), if α = 0.

This ψ(x) obeys (2.8). We have ψ(a) = 0. Also ψ ′(a) = 0 by (2.7). Thus ψ(x) is

a solution to (2.8) with initial conditions ψ(a) = ψ ′(a) = 0. We can conclude that

ψ(x) = 0, a < x < b. Therefore,

φ2(x) =Cφ1(x), C =
φ2(a)

φ1(a)
or

φ ′
2(a)

φ ′
1(a)

.

⊓⊔

Proof (Theorem 2). Let us set λ1 = λ , φ1(x) = φ(x), λ2 = λ , and φ2(x) = φ(x) in

(2.9). Then instead of (2.11), we have

(λ −λ )
∫ b

a
|φ(x)|2ρ(x)dx = 0.

Therefore, λ = λ . The imaginary part of λ is zero. ⊓⊔
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Remark 1. The first half of the proof of Theorem 1 holds if (2.10) is verified. Thus

the orthogonality in Theorems 1 can be extended to the case of periodic boundary

conditions φ(a) = φ(b), φ ′(a) = φ ′(b), s(a) = s(b), and the singular case of s(a) =
s(b) = 0. We can similarly extend Theorem 2.

Just like the usual Fourier series, we can express a function f (x) as

f (x)≃ fN(x), fN(x) =
N

∑
n=1

ĉnφn(x), ĉn =
〈 f ,φn〉ρ

‖φn‖2
. (2.12)

Theorem 3 (Convergence). Let f be a function such that
∫ b

a f (x)2ρ(x)dx <
∞. (i) We have

∫ b

a
fN(x)

2ρ(x)dx →
∫ b

a
f (x)2ρ(x)dx as N → ∞.

(ii) Furthermore we assume f is piecewise smooth. Then

fN(x)→
1

2
[ f (x+0)+ f (x−0)] on x ∈ (a,b) as N → ∞.

(iii) If f ∈C[a,b] (continuous on [a,b]), f ′ is piecewise continuous, and f sat-

isfies the boundary conditions of the Sturm-Liouville problem, then fN con-

verges uniformly on [a,b].

Remark 2. By the convergence (i), we could consider the mean square error and the

convergence rate of the Fourier sine and cosine series. The convergence (ii) was

seen in Figs. 1.1 and 1.2. Due to the convergence (iii), the Fourier cosine series in

Fig. 1.2 converged uniformly.

Remark 3. Theorem 3(ii) can be readily extended to the interval [a,b] by using f̄

which is the periodic extension of f .

Remark 4. In the series (2.12) we labeled nontrivial solutions φn using n = 1,2, . . . .
But we can rename them as φ0,φ1, . . . if it is more convenient.

Nonhomogeneous boundary conditions 16

Let us consider the heat equation in the slab 0 < z < L:

16 This section corresponds to §2.3 of the textbook.
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

















ut = Kuzz + r(z), t > 0, 0 < z < L,

u(0, t)cosα −Luz(0, t)sinα = T1, t > 0,

u(L, t)cosβ +Luz(L, t)sinβ = T2, t > 0,

u(z,0) = f (z), 0 < z < L,

(2.13)

where f (z), 0 < z < L, is a piecewise smooth function, and K > 0 and α,β ∈ [0,π)
are constants. The equation is nonhomogeneous because there is an internal source

r(z). The boundary conditions are nonhomogeneous because T1 and T2 are nonzero.

We can solve the problem as follows.

Step 1

We find the steady-state solution U(z), which obeys











KU ′′(z)+ r(z) = 0, 0 < z < L,

U(0)cosα −LU ′(0)sinα = T1,

U(L)cosβ +LU ′(L)sinβ = T2.

Step 2

We rewrite the problem using v(z, t) = u(z, t)−U(z).



















vt = Kvzz, t > 0, 0 < z < L,

v(0, t)cosα −Lvz(0, t)sinα = 0, t > 0,

v(L, t)cosβ +Lvz(L, t)sinβ = 0, t > 0,

v(z,0) = f (z)−U(z), 0 < z < L.

(2.14)

Thus v(z, t) satisfies a homogeneous equation with homogeneous boundary

conditions.

Step 3

We use separation of variables, v(z, t) = φ(z)T (t), and solve (2.14). Finally,

we obtain

u(z, t) =U(z)+ v(z, t).

Step 3 can be done as follows. We obtain

φ ′′+λφ = 0, 0 < z < L, T ′+λKT = 0, t > 0,

where φ(z) satisfies the boundary conditions

φ(0)cosα −Lφ ′(0)sinα = 0, φ(L)cosβ +Lφ ′(L)sinβ = 0.
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Note that φ and λ are an eigenfunction and an eigenvalue of the Sturm-Liouville

eigenproblem. In particular, we have
∫ L

0 φn(z)φm(z)dz = 0 (n 6= m). All vn(z, t) =

φn(z)e
−λnKt satisfy vt = Kvzz and the boundary conditions in (2.14). Since vt = Kvzz

is homogeneous (there is no source term r), any linear combination of vn(z, t) also

satisfies vt = Kvzz and the boundary conditions in (2.14). We write

v(z, t) =
∞

∑
n

Anφn(z)e
−λnKt . (2.15)

At t = 0, by multiplying φn(z) and integrating over z, we obtain

∫ L

0
v(z,0)φn(z)dz =

∫ L

0
[ f (z)−U(z)]φn(z)dz.

Using the orthogonality relations for φn(z), the left-hand side becomes

∫ L

0
v(z,0)φn(z)dz =

∞

∑
n′

An′

∫ L

0
φn′(z)φn(z)dz = An‖φn‖2.

Thus the coefficients An are determined by the initial condition as

An =

∫ L
0 [ f (z)−U(z)]φn(z)dz

∫ L
0 φn(z)2dz

. (2.16)

With An in (2.16), v(z, t) in (2.15) satisfies (2.14) including the initial condition.

Finally, the solution is

u(z, t) =U(z)+
∞

∑
n

Anφn(z)e
−λnKt . (2.17)

Example 11. Let us solve the following heat equation in a slab.



















ut = Kuzz, t > 0, 0 < z < L,

u(0, t) = T1, t > 0,

u(L, t) = T2, t > 0,

u(z,0) = 1, 0 < z < L.

Step 1: We will obtain U(z) which obeys

U ′′(z) = 0, 0 < z < L, U(0) = T1, U(L) = T2.

The coefficients of the general solution U(z) = A+Bz are determined by the bound-

ary conditions as A = T1, B = (T2 − T1)/L. Step 2: We then consider v(z, t) =
u(z, t)−U(z) which satisfies
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vt = Kvzz, t > 0, 0 < z < L,

v(0, t) = v(L, t) = 0, t > 0, v(z,0) = 1−U(z), 0 < z < L.

Step 3: By separation of variable we write v(z, t) = φ(z)T (t). The function T (t) is

obtained as T (t) = e−λKt with the separation constant λ . The function φ(z) satisfies

the Sturm-Liouville problem: φ ′′+λφ = 0, 0 < z < L, φ(0) = φ(L) = 0. Hence we

obtain

φ(z) = sin
nπz

L
, λ =

(nπ

L

)2

, n = 1,2, . . . .

We can write v(z, t) as

v(z, t) =
∞

∑
n=1

An sin
nπz

L
e−(nπ/L)2Kt .

The coefficients An are determined by the initial condition as

∞

∑
n=1

An sin
nπz

L
= 1−U(z) = 1−T1 −

T2 −T1

L
z.

Using the orthogonality relations
∫ L

0 sin(nπz/L)sin(mπz/L)dz = (L/2)δnm, and the

integrals
∫ L

0 sin(nπz/L)dz= L(1−(−1)n)/(nπ) and
∫ L

0 zsin(nπz/L)dz= L2(−1)n+1/(nπ),
we find An. Finally we obtain

u(z, t) = T1 +
T2 −T1

L
z+

2

π

∞

∑
n=1

1−T1 − (−1)n(1−T2)

n
sin

nπz

L
e−(nπ/L)2Kt .

Example 12. Let us solve the following heat equation in a slab.



















ut = Kuzz, t > 0, 0 < z < L,

uz(0, t) = Φ , t > 0,

uz(L, t) = Φ , t > 0,

u(z,0) = 1, 0 < z < L.

Step 1: We will obtain U(z) which obeys 17

U ′′(z) = 0, 0 < z < L, U ′(0) =U ′(L) = Φ .

The general solution is obtained as U(z) = A+Bz. From the boundary conditions,

B = Φ . So far, A is an arbitrary constant. Step 2: We then consider v(z, t) = u(z, t)−
U(z) which satisfies

vt = Kvzz, t > 0, 0 < z < L,

vz(0, t) = vz(L, t) = 0, t > 0, v(z,0) = 1−U(z), 0 < z < L.

17 In the case of uz(0, t) = Φ1, uz(L, t) = Φ2 (Φ1 6= Φ2), the temperature won’t come to the steady

state. Indeed it is impossible to find A,B such that U = A+Bz satisfies these boundary conditions.
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Step 3: By separation of variable we write v(z, t) = φ(z)T (t). The function T (t) is

obtained as T (t) = e−λKt with the separation constant λ . The function φ(z) satisfies

the Sturm-Liouville problem: φ ′′+λφ = 0, 0 < z < L, φ ′(0) = φ ′(L) = 0. Hence

we obtain

φ(z) = cos
nπz

L
, λ =

(nπ

L

)2

, n = 0,1,2, . . . .

We can write v(z, t) as

v(z, t) =
∞

∑
n=0

An cos
nπz

L
e−(nπ/L)2Kt .

The coefficients An are determined by the initial condition as

∞

∑
n=0

An cos
nπz

L
= 1−U(z) = 1−A−Φz.

According to the Sturm-Liouville theory we have
∫ L

0 cos(nπz/L)cos(mπz/L)dz = 0

(n 6= m). Also using the integrals
∫ L

0 cos(nπz/L)dz = Lδn0,
∫ L

0 zcos(nπz/L)dz =

((−1)n −1)L2/(nπ)2 (n 6= 0),
∫ L

0 cos2(nπz/L)dz = L/2 (n 6= 0), we obtain

A0 = 1−A− LΦ

2
, An = 2LΦ

1− (−1)n

(nπ)2
.

Finally we obtain

u(z, t) = 1+

(

z− L

2

)

Φ +
2LΦ

π2

∞

∑
n=1

1− (−1)n

n2
cos

nπz

L
e−(nπ/L)2Kt .

Uniqueness

If we plug (2.17) into (2.13), we find that (2.17) is a solution (this check is important

to avoid mistakes!). Now the question is if this u(z, t) is the unique solution.

Theorem 4 (Uniqueness). The heat equation below has a unique solution.



















ut = Kuzz + r(z), t > 0, 0 < z < L,

u(0, t) = T1, t > 0,

u(L, t) = T2, t > 0,

u(z,0) = f (z), 0 < z < L.
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Proof. Suppose that u1 and u2 are solutions. We set u = u1 − u2. Then we have

ut = Kuzz, u(0, t) = u(L, t) = 0, and u(z,0) = 0. By multiplying u on both sides, we

have

ut = Kuzz ⇒ uut = Kuuzz ⇒ 1

2
∂tu

2 = K

(

1

2
∂ 2

z u2 −u2
z

)

.

By integrating both sides, we obtain

1

2
∂t

∫ L

0
u2dz = K

(

1

2
∂zu

2
∣

∣

L

0
−

∫ L

0
u2

z dz

)

= K uuz|L0 −K

∫ L

0
u2

z dz.

We introduce

w(t) =
1

2

∫ L

0
u(z, t)2dz.

We have

w′(t) =−K

∫ L

0
uz(z, t)

2dz.

Thus we have

w(t)≥ 0, w′(t)≤ 0.

The initial condition u(z,0) = 0 implies

w(0) = 0.

Therefore w(t) = 0 (t ≥ 0). This then implies u1 = u2 (t ≥ 0, 0 ≤ z ≤ L). ⊓⊔

Note that18 the boundary conditions were used only to show uuz|L0 = 0 in the

above proof. Hence the theorem can be extended to other boundary conditions such

as uz(0) = uz(L) = 0.

18 We can also prove the uniqueness for the general boundary conditions u(0, t)cosα −
Luz(0, t)sinα = T1 and u(L, t)cosβ + Luz(L, t)sinβ = T2 with α ,β ∈ (0,π). In this case

u = u1 − u2 satisfies u(0, t) cotα
L

− uz(0, t) = 0 and u(L, t) cotβ
L

+ uz(L, t) = 0. If α ,β ≤
π
2

, then cotα ,cotβ ≥ 0 and the above proof still holds because uuz|L0 = − cotβ
L

u(L)2 −
cotα

L
u(0)2 ≤ 0. Otherwise we can calculate the second derivative w′′(t) =

∫ L
0 u2

t dz +
∫ L

0 uutt dz.

The second term is calculated as
∫ L

0 uutt dz = K
∫ L

0 u∂t uzzdz = K u∂t uz|L0 − K
∫ L

0 uz∂tuzdz =

K u∂t uz|L0 − K uz∂t u|L0 + K
∫ L

0 uzz∂tudz = K
∫ L

0 uzzut dz =
∫ L

0 u2
t dz. Hence w′′(t) = 2

∫ L
0 u2

t dz ≥
0 and w(t) is convex. Since w(t) ≥ 0, w′′(t) ≥ 0, we see that w(t) monotonically grows.

We can show that ww′′ − (w′)2 = w(t) limh→0
w(t+h)−2w(t)+w(t−h)

h2 −
[

limh→0
w(t+h)−w(t)

h

]2

≤
1
h2 limh→0

{[

w(t +h)2 −2w(t)2 +w(t)2
]

−
[

w(t +h)2 −2w(t)2 +w(t)2
]}

= 0, where we used

w(t−h)≤ w(t)≤ w(t+h). Note that we have the equality only when w(t) = 0. On the other hand,

according to the definition of w(t) we obtain ww′′− (w′)2 = 1
2

∫ L
0 u2dz ·2∫ L

0 u2
t dz−

(

∫ L
0 uut dz

)2

≥
0, where we used the Cauchy-Schwarz inequality. Therefore w(t)w′′(t)− (w′(t))2 = 0, which im-

plies w(t) = 0. That is, we have proved u = u1 −u2 = 0.
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Asymptotic behavior

We investigate the asymptotic behavior when t → ∞.

We define the relaxation time τ as

1

τ
=− lim

t→∞

1

t
ln |v(z, t)|.

Since the above definition implies

v(z, t) = O
(

e−t/τ
)

,

we see that u(z, t) (=U(z)+ v(z, t)) comes to the steady state about at t = τ .

Let us consider the case of u(0, t) = 0, u(L, t) = 0. We obtain

vn(z, t) = An sin
nπz

L
e−(nπ/L)2Kt , λn =

(nπ

L

)2

.

Let M be the maximum of An (|An| ≤ M). We have

|u(z, t)−U(z)| =
∣

∣

∣

∣

∣

∞

∑
n=1

An sin
nπz

L
e−(nπ/L)2Kt

∣

∣

∣

∣

∣

≤
∞

∑
n=1

|An|
∣

∣

∣
sin

nπz

L

∣

∣

∣

∣

∣

∣
e−(nπ/L)2Kt

∣

∣

∣

≤ M
∞

∑
n=1

(

e−at
)(n2) ≤ M

∞

∑
n=1

(

e−at
)n

=
Me−at

1− e−at
= Me−at

(

1+ e−at + e−2at + . . .
)

∼ Me−at as t → ∞,

where a = π2K
L2 . Note that S = ∑∞

n=1 kn = k/(1 − k) because kS = ∑∞
n=1 kn+1 =

∑∞
n=2 kn = S− k. Therefore,

1

τ
=− lim

t→∞

1

t
ln
∣

∣Me−at
∣

∣= a.

The relaxation time τ is obtained as

τ =
1

λ1K
=

L2

π2K
.
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Time-dependent sources and boundaries

Here we suppose that r,T1,T2 depend on time t. In the slab 0 < z < L we have



















ut = Kuzz + r(z, t), t > 0, 0 < z < L,

u(0, t)cosα −Luz(0, t)sinα = T1(t), t > 0,

u(L, t)cosβ +Luz(L, t)sinβ = T2(t), t > 0,

u(z,0) = f (z), 0 < z < L,

(2.18)

where K > 0 and α,β ∈ [0,π) are constants. We assume that r(z, t), f (z), T1(t),
T2(t) are piecewise smooth functions.

Step 1

We fisrt solve the problem below.











Uzz(z, t) = 0, 0 < z < L,

U(0, t)cosα −LUz(0, t)sinα = T1(t), t > 0,

U(L, t)cosβ +LUz(L, t)sinβ = T2(t), t > 0.

Step 2

We define v(z, t) = u(z, t)−U(z, t). We also introduce

R(z, t) = r(z, t)−Ut(z, t), F(z) = f (z)−U(z,0).



















vt = Kvzz +R(z, t), t > 0, 0 < z < L,

v(0, t)cosα −Lvz(0, t)sinα = 0, t > 0,

v(L, t)cosβ +Lvz(L, t)sinβ = 0, t > 0,

v(z,0) = F(z), 0 < z < L.

(2.19)

Step 3

We solve (2.19) for v(z, t), and finally we obtain u(z, t) =U(z, t)+ v(z, t).

The function U(z, t) in Step 1 is obtained as

U(z, t) = A(t)+B(t)z.

The coefficients A,B are independent of z, and thus U satisfies Uzz(z, t) = 0. Since

U also depends on t, the coefficients A,B are functions of t in general. They are

determined so that the two boundary conditions are satisfied. In matrix form, they
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are written as

(

cosα −Lsinα
cosβ Lcosβ +Lsinβ

)(

A(t)
B(t)

)

=

(

T1(t)
T2(t)

)

.

If det = L(cosα sinβ + sinα cosβ + cosα cosβ ) 6= 0, we can find A,B uniquely. In

the Sturm-Liouville eigenvalue problem below, the right-hand side is

(

0

0

)

. Hence

for α,β with the condition det 6= 0, eigenvalues of the Sturm-Liouville problem are

all nonzero.

Let us consider Step 3. We consider the following Sturm-Liouville problem.

φ ′′+λφ = 0, 0 < z < L,

φ(0)cosα −Lφ ′(0)sinα = 0, φ(L)cosβ +Lφ ′(L)sinβ = 0.

Let λn and φn be eigenvalues and eigenfunctions of this Sturm-Liouville eigenprob-

lem. We express v,R,F with φn (recall the convergence theorem):

v(z, t) =
∞

∑
n=1

vn(t)φn(z), R(z, t) =
∞

∑
n=1

Rn(t)φn(z), F(z) =
∞

∑
n=1

Fnφn(z).

Note that v(z, t) written in this way automatically satisfies the boundary conditions

in (2.19). Here by using
∫ L

0 φn(z)φm(z)dz = 0 (n 6= m), we obtain

Rn =

∫ L
0 [r(z, t)−Ut(z, t)]φn(z)dz

∫ L
0 φn(z)2dz

, Fn =

∫ L
0 [ f (z)−U(z)]φn(z)dz

∫ L
0 φn(z)2dz

.

By substituting these expansions in (2.19), we obtain

{

vn(t)
′ =−λnKvn(t)+Rn(t), t > 0,

vn(0) = Fn.

We can solve this equation as (recall we can always solve first-order ODEs)

vn(t) = Fne−λnKt +
∫ t

0
Rn(s)e

−λnK(t−s)ds.

Finally we obtain

u(z, t) = U(z, t)+ v(z, t)

= U(z, t)+
∞

∑
n

[

Fne−λnKt +
∫ t

0
Rn(s)e

−λnK(t−s)ds

]

φn(z).

Example 13. Let us solve the following heat equation in a slab.



2 PDEs in rectangular coordinates 19



















ut = Kuzz, t > 0, 0 < z < L,

u(0, t) = 0, t > 0,

u(L, t) = t, t > 0,

u(z,0) = 0, 0 < z < L.

Step 1: We will obtain U(z, t) which obeys

Uzz(z, t) = 0, 0 < z < L, U(0, t) = 0, U(L, t) = t.

The coefficients of the general solution U(z, t) = A + Bz are determined by the

boundary conditions as A = 0, B = t/L. Step 2: We then consider v(z, t) = u(z, t)−
U(z, t) and R(z, t) =−Ut(z, t) =−z/L which satisfies

vt = Kvzz +R(z, t), t > 0, 0 < z < L,

v(0, t) = v(L, t) = 0, t > 0, v(z,0) = 0, 0 < z < L.

Step 3: We solve the following Sturm-Liouville problem.

φ ′′+λφ = 0, 0 < z < L, φ(0) = φ(L) = 0.

We are familiar with this problem and obtain φn(z) = sin(nπz/L), λn = (nπ/L)2

(n = 1,2, . . . ). We express v,R as

v(z, t) =
∞

∑
n=1

vn(t)φn(z), R(z, t) =
∞

∑
n=1

Rnφn(z).

Here we obtain

Rn =

∫ L
0 (−z/L)φn(z)dz
∫ L

0 φn(z)2dz
=

−2

L2

∫ L

0
zsin

nπz

L
dz =

2(−1)n

nπ
.

The coefficients vn(t) satisfy

vn(t)
′ =−λnKvn(t)+Rn, t > 0, vn(0) = 0.

This equation is solved as

vn(t) =
∫ t

0
Rne−λnK(t−s)ds.

Finally we obtain

u(z, t) =
tz

L
+

2

π

∞

∑
n=1

(−1)n

n

1− e−λnKt

λnK
sin

nπz

L
.

Remark 5. In Example 12, we gave up solving the problem, ut =Kuzz (t > 0, 0< z<
L) with boundary conditions uz(0, t) =Φ1, uz(L, t) =Φ2 (t > 0) and initial condition
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u(z,0) = 1 (0 < z < L). We can also solve this problem by slightly modifying the

method which we developed for time-dependent boundaries.19

The wave equation 20

Let us consider electromagnetic fields in a linear, isotropic, homogeneous medium.

The fields E and H are governed by Maxwell’s equations:

∇ ·E = 0, ∇ ·H = 0,

∇×E =−µ

c

∂H

∂ t
, ∇×H =

ε

c

∂E

∂ t
.

Here ε is the dielectric permittivity, µ is the magnetic permeability, and c is the

speed of light in vacuum.

By using ∇× (∇×A) = ∇(∇ ·A)−∇2A, we obtain

∂ 2
t E =

c2

εµ
∆E, ∂ 2

t H =
c2

εµ
∆H. (2.20)

If we focus on one component, for example, we have

∂ 2E(1)

∂ t2
=

c2

εµ

∂ 2E(1)

∂x2
(2.21)

Equations (2.20) and (2.21) are called the wave equation.

19 With a constant C, we introduce U(z) as Uzz(z) =C (t > 0, 0 < z < L), U ′(0) = Φ1, U ′(L) = Φ2.

Then U(z) = A + Bz + (C/2)z2 with B = Φ1, C = (Φ2 − Φ1)/L. Here A is an arbitrary con-

stant. Then we can introduce v(z, t) as vt = Kvzz +R (t > 0, 0 < z < L), vz(0, t) = vz(L, t) = 0

(t > 0), v(z,0) = F(z) (0 < z < L), where R = KC, F(z) = 1 −U(z). We consider the Sturm-

Liouville problem, φ ′′ + λφ = 0, φ ′(0) = φ ′(L) = 0. We obtain φ = φn = cos(nπz/L), λ =
λn = (nπ/L)2 (n = 0,1, . . . ). Let us expand v,R,F using φn: v(z, t) = ∑∞

n=0 vn(t)φn(z), R =
∑∞

n=0 φn(z), and F(z) = ∑∞
n=0 Fnφn(z). Note that Rn = CKδn0, F0 = 1−A−BL/2−CL2/6, and

Fn≥1 = −(2/L)
∫ L

0 (Bz+Cz2/2)φn(z)dz = −2L[B((−1)n − 1)+CL(−1)n]/(nπ)2, where we used
∫ L

0 zcos(nπz/L)dz = L2((−1)n − 1)/(nπ)2 and
∫ L

0 z2 cos(nπz/L)dz = 2L3(−1)n/(nπ)2. Thus we

have v0(z, t) = F0(z)+CKt, vn≥1(z, t) = Fn(z)e
−λnKt . Finally we obtain u(z, t) = U(z)+ v(z, t) =

1 + (z − L/2)Φ1 + (z2 − L2/3)(Φ2 − Φ1)/(2L) + t(Φ2 − Φ1)K/L + (2L/π2)∑∞
n=1(1/n2)[Φ1 −

(−1)nΦ2]cos(nπz/L)e−(nπ/L)2Kt . We see that the steady state is not achieved and the temperature

asymptotically behaves as u(z, t)∼ t(Φ2 −Φ1)K/L as t → ∞.
20 This section corresponds to §2.4 of the textbook.
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The vibrating string

Let us consider a segment of a string between s1 = s and s2 = s + ∆s, where s

is the length from the left edge. The segment lies in the x-y plane between x and

x+∆x. Let y(s, t) be the vertical position of the string at s. Let ρ(s) be the mass

density function, i.e.,
∫ b

a ρ(s)ds is the mass of the segment of the string in s ∈ [a,b].
Newton’s equation of motion for the segment is written as

ρ(s)∆s
∂ 2y

∂ t2
= ρ(s)∆s f (s, t)+T2 sinθ2 −T1 sinθ1, (2.22)

where T1 and T2 be the tension at s1 and s2, respectively, and f (s, t) = −g (g is the

gravitational acceleration). Since the string doesn’t move in the horizontal direction

along the x-axis, we have

T1 cosθ1 = T2 cosθ2. (2.23)

We consider small vibrations of a string. That is, we assume that θ1,θ2 are small.

By Taylor series we approximate cosθ and sinθ as

cosθ = 1− θ 2

2!
+

θ 4

4!
− θ 6

6!
+ · · · ≃ 1, sinθ = θ − θ 3

3!
+

θ 5

5!
− θ 7

7!
+ · · · ≃ θ .

By (2.23) we have T1 ≃ T2. We set

T1 = T2 = T0.

The slope at each edge of the segment is

∂y

∂x

∣

∣

∣

∣

∣

x

= tanθ1 ≃ θ1 ≃ sinθ1,
∂y

∂x

∣

∣

∣

∣

∣

x+∆x

= tanθ2 ≃ θ2 ≃ sinθ2.

Thus for |θ | ≪ 1, the equation of motion (2.22) becomes

ρ∆sytt = ρ∆s f +T0 [yx(x+∆x)− yx(x)] .

Noting that min(∆scosθ1,∆scosθ2)≤ ∆x ≤ max(∆scosθ1,∆scosθ2), and ∆s ≃ ∆x,

we have

ytt = f +
T0

ρ

yx(x+∆x)− yx(x)

∆x
.

Thus we obtain the wave equation:

∂ 2y

∂ t2
= f (x, t)+

T0

ρ(x)

∂ 2y

∂x2
.
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The distance s along the segment is a function of x. Hence we used x in f ,ρ (the

new function f (x, t),ρ(x) are equal to f (s(x), t),ρ(s(x)) in the original functions).

Example 14. Let c be a positive constant and f (x), 0 < x < L, be a piecewise smooth

function. We consider the wave equation below.



















ytt = c2yxx, t > 0, 0 < x < L,

y(0, t) = y(L, t) = 0,

y(x,0) = f (x),

yt(x,0) = 0.

By separation of variables y(x, t) = φ(x)T (t), we obtain

φ ′′+λφ = 0, φ(0) = φ(L) = 0,

and

T ′′+λc2T = 0, T ′(0) = 0.

We can solve these equations as φ(x) = φn(x), T (t) = Tn(t), n = 1,2, . . . , where

φn(x) = sin(
√

λnx), Tn(t) = cos(
√

λnct), λn =
(nπ

L

)2

.

Thus the solution is written as

y(x, t) =
∞

∑
n=1

Bn cos
nπct

L
sin

nπx

L
.

The coefficients Bn are determined by y(x,0) = f (x):

Bn =
2

L

∫ L

0
f (x)φn(x)dx.

Alternatively we can also extend f (x) as an odd function fO(x) and consider

∑∞
n=1 Bn sin(nπx/L) = fO(x) on x ∈ (−L,L). The we have

Bn =
1

L

∫ L

−L
fO(x)sin

nπx

L
dx =

2

L

∫ L

0
fO(x)sin

nπx

L
dx =

2

L

∫ L

0
f (x)sin

nπx

L
ds.

Applications of multiple Fourier series 21

Double Fourier series appear if there are more than two variables.

21 This section corresponds to §2.5 of the textbook.
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Theorem 5 (Orthogonality relations). For m,n = 1,2, · · · , we have

∫ L2

0

∫ L1

0
sin

mπx

L1
sin

nπy

L2
sin

m′πx

L1
sin

n′πy

L2
dxdy =

L1L2

4
δmm′δnn′ .

Proof. Recall (see (2.5))

∫ L

0
sin

nπx

L
sin

mπx

L
dx =

L

2
δnm.

⊓⊔
Example 15. Consider small transverse vibrations u(x,y, t) of a membrane.











utt = c2(uxx +uyy), 0 < x < L1, 0 < y < L2, t > 0,

u = 0, x = 0, x = L1, y = 0, y = L2, t > 0,

u(x,y,0) = 0, ut(x,y,0) = 1, 0 < x < L1, 0 < y < L2.

We assume the following form

u(x,y, t) = φ1(x)φ2(y)T (t).

We obtain T ′′/T = c2 [(φ ′′
1 /φ1)+(φ ′′

2 /φ2)]. By introducing separation constants λ ,

µ1, and µ2, we obtain

T ′′+λc2T = 0, φ ′′
1 +µ1φ1 = 0, φ ′′

2 +µ2φ2 = 0,

where T ′′/T =−λc2, φ ′′
1 /φ1 =−µ1, and φ ′′

2 /φ2 =−µ2. Note that

λ = µ1 +µ2.

There are many cases: λ > 0, λ = 0, λ < 0, µ1 > 0, µ1 = 0, µ1 < 0, µ2 > 0, µ2 = 0,

and µ2 < 0. Let us consider the boundary conditions. For φ1(x), we have

φ ′′
1 +µ1φ1 = 0, φ1(0) = φ1(L1) = 0.

Nontrivial solutions are possible only when µ1 > 0. We obtain

φ1(x) = sin
mπx

L1
, µ1 =

(

mπ

L1

)2

, m = 1,2, . . . .

Note that we omitted a constant factor. Similarly for φ2(y), we have

φ2(y) = sin
nπx

L2
, µ2 =

(

nπ

L2

)2

, n = 1,2, . . . .
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Because λ > 0 (λ = µ1 +µ2), T (t) is obtained as

T (t) = Acos
(√

λct
)

+Bsin
(√

λct
)

.

(u(x,y,0) = 0 implies T (0) = 0 and we can easily obtain A = 0, but let’s keep both

terms here, so that we can see how A and B are determined in general.) The general

solution is thus given by

u(x,y, t) =
∞

∑
m=1

∞

∑
n=1

sin
mπx

L1
sin

nπy

L2
(Amn cos(ωmnt)+Bmn sin(ωmnt)) ,

where

ωmn = c

√

(

mπ

L1

)2

+

(

nπ

L2

)2

.

Now we consider the initial conditions; u(x,y,0)= 0 implies Amn = 0, and ut(x,y,0)=
1 implies

1 =
∞

∑
m=1

∞

∑
n=1

Bmnωmn sin
mπx

L1
sin

nπy

L2
.

Using orthogonality relations,

∫ L2

0

∫ L1

0
sin

mπx

L1
sin

nπy

L2
dxdy

=
∫ L2

0

∫ L1

0
sin

mπx

L1
sin

nπy

L2

∞

∑
m′=1

∞

∑
n′=1

Bm′n′ωm′n′ sin
m′πx

L1
sin

n′πy

L2
dxdy

=
∞

∑
m′=1

∞

∑
n′=1

Bm′n′ωm′n′

∫ L2

0

∫ L1

0
sin

mπx

L1
sin

nπy

L2
sin

m′πx

L1
sin

n′πy

L2
dxdy

=
∞

∑
m′=1

∞

∑
n′=1

Bm′n′ωm′n′
L1L2

4
δmm′δnn′ = Bmnωmn

L1L2

4
.

We obtain

Bmnωmn =
4

L1L2

∫ L1

0
sin

mπx

L1
dx

∫ L2

0
sin

nπy

L2
dy

=
4

L1L2

L1

mπ
(1− cos(mπ))

L2

nπ
(1− cos(nπ))

=
4

π2

[1− (−1)m][1− (−1)n]

mn
.

Finally, the solution is

u(x,y, t) =
4

π2

∞

∑
m=1

∞

∑
n=1

[1− (−1)m][1− (−1)n]

mnωmn

sin
mπx

L1
sin

nπy

L2
sin(ωmnt).


