
Chapter 1

Introduction and preliminaries

Partial differential equations 1

What is a partial differential equation?

ODEs (Ordinary Differential Equations) have one variable (x). PDEs (Partial Dif-

ferential Equations) have multiple variables (x,y, . . . ).
For f (x) with one variable x, we know f ′(x) = d f

dx
. For u(x,y), we introduce

partial derivatives as

∂u

∂x
=

du

dx

∣

∣

∣

∣

y is fixed
= ∂xu = ux.

Similarly,

∂ 2u

∂x2
= ∂ 2

x u = uxx.

Example 1. For u(x,y) = xy2, we have

ux = y2, uxx = 0, uy = 2xy, uyy = 2x.

Example 2. The equations below are PDEs.

uxx −uy = 0 (the heat equation)

uxx −uyy = 0 (the wave equation)

uxx +uyy = 0 (Laplace’s equation)

The order of a PDE is the order of the highest-order derivative in the equation.

The above examples are second order. The equation ux +uy = 0 is first order.

Let us write a PDE as

L u = g,

where g is independent of u. In the case of the wave equation, L = ∂ 2
x − ∂ 2

y . The

equation with L = ∂ 2
x +∂ 2

y and some function g(x,y) is called Poisson’s equation.

Winter 2014 Math 454 Sec 2

Boundary Value Problems for Partial Differential Equations

Manabu Machida (University of Michigan)

1 This section corresponds to §0.1 of the textbook.

1



2 Math 454

If we have

L (u+ v) = L u+L v, L (cu) = cL u,

for any functions u,v and constant c, then L is a linear differential operator and the

equation is said to be linear. If g ≡ 0, then the equation is called homogeneous. The

heat equation, wave equation, and Laplace’s equation are all linear homogeneous

equations. Poisson’s equation is a linear nonhomogeneous PDE.

Classification of second-order PDEs

In this course we will mainly consider second-order equations. In general, second-

order PDEs are written as

a(x,y)uxx +b(x,y)uxy + c(x,y)uyy +d(x,y)ux + e(x,y)uy + f (x,y)u = g(x,y),

with coefficients a,b,c,d,e, f and source term g. We assume a2 + b2 + c2 6= 0 (at

least one of a,b,c is nonzero). These equations are classified as follows by the co-

efficients a,b,c.











4ac−b2 > 0 elliptic

4ac−b2 = 0 parabolic

4ac−b2 < 0 hyperbolic

Let α,β ,γ be constants. Note that 2 ellipses (x/α)2+(y/β )2 = 1 satisfy 4(1/α2)(1/β 2)−
02 > 0, parabolas y2 = 4γx satisfy 4 · 0 · 1 − 02 = 0, and hyperbolas (x/α)2 −
(y/β )2 = 1 satisfy 4(1/α2)(−1/β 2)−02 < 0.

2 For constants a,b,c, let us consider the symmetric matrix A =

(

a b/2

b/2 c

)

. Then we have

auxx +buxy + cuyy =
2

∑
i=1

2

∑
j=1

Ai jui j =
2

∑
i=1

2

∑
j=1

Ai j

∂ 2u

∂i∂ j

= (∂x ∂y)A

(

∂x

∂y

)

.

Let λ = λ1,λ2 be the eigenvalues of A.

det

(

a−λ b/2

b/2 c−λ

)

= 0 ⇔ λ =
1

2

[

a+ c±
√

(a+ c)2 +D

]

,

where D = b2 −4ac. Therefore,

elliptic ⇔ D < 0 ⇔ λ1 > 0,λ2 > 0 or λ1 < 0,λ2 < 0,
parabolic ⇔ D = 0 ⇔ λ1 = 0,λ2 6= 0 or λ1 6= 0,λ2 = 0,

hyperbolic ⇔ D > 0 ⇔ λ1 < 0,λ2 > 0 or λ1 > 0,λ2 < 0.
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The heat equation is parabolic and the wave equation is hyperbolic. Laplace’s

equation and Poisson’s equation are elliptic.

Complex Numbers

Let us recall Euler’s formula

eiθ = cosθ + isinθ , (1.1)

where i =
√
−1, i2 =−1. We can write cosθ ,sinθ using exponential functions:

cosθ =
eiθ + e−iθ

2
, sinθ =

eiθ − e−iθ

2i
.

Note that coshx and sinhx are defined similarly:

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
.

Note also the following relations.

cos2 θ + sin2 θ = 1, cosh2 x− sinh2 x = 1,

cos(iθ) = coshθ , sin(iθ) = isinhθ , cosh(ix) = cosx, sinh(ix) = isinx.

Review of ODEs (1) 3

Let us consider ODEs of y(x).

Separable

Sometimes we can separate x and y in the equation. In such a case, the equation is

said to be separable.

Example 3. Let us solve y′ =−6xy. We can rewrite this as

dy

y
=−6xdx.

3 See A.1 of the textbook.
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We integrate both sides:

∫

dy

y
=
∫

(−6x)dx. Thus we obtain ln |y|=−3x2+C′, and

hence y =Ce−3x2
, where C (=±eC′

) is an arbitrary constant.

Linear first-order equations

Consider

y′(x)+ p(x)y(x) = q(x), y(x0) = y0.

This type can always be solved as follows. By multiplying the integrating factor

exp
(

∫ x
x0

p(x′)dx′
)

, we have d
dx

[

y(x)e
∫ x

x0
p(x′)dx′

]

= q(x)e
∫ x

x0
p(x′)dx′

. Therefore,

y = e
−∫ x

x0
p(x′)dx′

[

∫ x

x0

q(x′)e
∫ x′

x0
p(x′′)dx′′

dx′+ y0

]

.

Example 4. (x2 +1)y′+3xy = 6x, y(0) = 3 is solved as y(x) = 2+(x2 +1)−3/2.

Homogeneous second-order linear equations

Consider y′′+ p(x)y′+ q(x)y = 0. The general solution is given by a superposition

(linear combination) of two linearly independent solutions y1,y2: y(x) =C1y1(x)+
C2y2(x). (C1y1 +C2y2 = 0 for all x only when C1 =C2 = 0.)

Constant Coefficients

Consider ay′′+ by′+ cy = 0 (a 6= 0). By y = erx, we obtain ar2 + br+ c = 0.

From this characteristic equation, we obtain two solutions y1(x) = er1x and

y2(x) = er2x, where r1,r2 = −b±
√

b2−4ac

2a
, and the general solution is written

as

y(x) =C1er1x +C2er2x.

If ar2+br+c= 0 has complex roots α± iβ , then the general solution can be written

as

y(x) =C1e(α+iβ )x +C2e(α−iβ )x = eαx (c1 cosβx+ c2 sinβx) ,

where c1 =C1 +C2, c2 = i(C1 −C2).
If the characteristic equation has equal roots r1 = r2 = r, then two linearly inde-

pendent solutions are found as y1 = erx and y2 = xerx. Thus the general solution is
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given by

y(x) =C1y1(x)+C2y2(x) = (C1 +C2x)erx.

Example 5. Let us solve y′′+ 2y′+ y = 0, y(0) = 5, y′(0) = −3. The characteristic

equation is r2 + 2r + 1 = (r + 1)2 = 0. Thus r1 = r2 = −1. The general solution

is written as y(x) = (C1 +C2x)e−x. By the conditions at x = 0, we get C1 = 5 and

C2 = 2. We obtain y(x) = (5+2x)e−x.

Separation of variables 4

Many linear PDEs can be reduced to linear ODEs with the method of separation of

variables, described below.

We look for a separated solution (this is an ansatz5)

u(x,y) = X(x)Y (y).

Consider Laplace’s equation uxx +uyy = 0. We obtain

X ′′Y +XY ′′ = 0 ⇒ X ′′

X
+

Y ′′

Y
= 0.

This implies X ′′/X and Y ′′/Y are constants.

Let λ be a constant and we write

X ′′+λX = 0, Y ′′−λY = 0.

We call λ the separation constant. At this moment λ is arbitrary. Thus the PDE

reduced to two ODEs.

If λ = 0, then two ODEs have the following linearly independent solutions.

X = 1, x, Y = 1, y.

If λ 6= 0, then two ODEs have the following linearly independent solutions.

X = e
√
−λx, e−

√
−λx, Y = e

√
λy, e−

√
λy. (1.2)

In either case, the solution is given by superpositions:

4 This section corresponds to §0.2 of the textbook.
5 an assumption or a guess to be verified later.
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u =







(A1x+A2)(B1y+B2), λ = 0,
(

A1e
√
−λx +A2e−

√
−λx
)(

B1e
√

λy +B2e−
√

λy
)

, λ 6= 0,
(1.3)

where A1,A2,B1,B2 are constants. For λ > 0, by writing λ = k2 (k > 0) we have

u(x,y) =
(

A1eikx +A2e−ikx
)(

B1eky +B2e−ky
)

, (1.4)

and for λ < 0, by writing λ =−l2 (l > 0) we have

u(x,y) =
(

A1elx +A2e−lx
)(

B1eily +B2e−ily
)

. (1.5)

Instead of (1.2) we can also choose

X = cos
(√

λx
)

, sin
(√

λx
)

, Y = cosh
(√

λy
)

, sinh
(√

λy
)

.

In this case we have

u(x,y) = (A1 cos(kx)+A2 sin(kx))(B1 cosh(ky)+B2 sinh(ky)) , (1.6)

u(x,y) = (A1 cosh(lx)+A2 sinh(lx))(B1 cos(ly)+B2 sin(ly)) . (1.7)

Note that (1.6) becomes (1.4) and (1.7) becomes (1.5) by redefining the coefficients.

We call solutions such as (1.3) through (1.7) separated solutions because they are

given in the form u(x,y) = X(x)Y (y).
The separation constant λ and coefficients A1,A2,B1,B2 are partially determined

by boundary conditions. Suppose that our Laplace’s equation is considered in the

region 0 < x < L, 0 < y < ∞ with boundary conditions

u(0,y) = 0, u(L,y) = 0, u(x,0) = 0.

We find that u = (A1x+A2)(B1y+B2) in (1.3) satisfies the boundary conditions

only when u = 0.

We then find that (1.5) and (1.7) satisfy the conditions u(0,y) = u(L,y) = 0 only

when A1 = A2 = 0. That is, only the solution u= 0 satisfies the boundary conditions.

Finally (1.4) and (1.6) satisfy u(0,y) = u(L,y) = 0 when A1 = 0 and k = nπ/L,

where n is an integer. Furthermore we find B1 = 0 by the condition u(x,0) = 0. That

is, the solution A2B2 sin(kx)sinh(ky) with k = nπ/L (n = 0,±1,±2, . . . ) satisfies the

boundary conditions.

Therefore we obtain the following separated solutions of Laplace’s equation sat-

isfying the boundary conditions.

u(x,y) = Asin
nπx

L
sinh

nπy

L
, n = 1,2, . . . ,
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where A is a constant. Note that we still have infinitely many solutions. In general A

depends on n. To have a unique solution, we need one more condition and need to

use Fourier series.

Fourier series 6

Let A0,A1,B1, . . . be constants. The series below is called a trigonometric series.

A0 +
∞

∑
n=1

(

An cos
nπx

L
+Bn sin

nπx

L

)

.

Suppose that a function f (x) ∈ R, −L < x < L, is given by a trigonometric series:

f (x) = A0 +
∞

∑
n=1

(

An cos
nπx

L
+Bn sin

nπx

L

)

. (1.8)

Example 6. The function f (x) = cos(πx/L), −L < x < L, is given by the trigono-

metric series with A1 = 1 and A0 = A2 = A3 = · · ·= B1 = B2 = · · ·= 0.

For a given f (x), we can determine the coefficients A0,An,Bn making use of

orthogonality relations.

Definition 1. The Kronecker delta δmn is defined as

δmn =

{

1, m = n,

0, m 6= n.

Theorem 1 (Orthogonality relations). Let n,m be integers. We assume L >
0. The following orthogonality relations hold.

∫ L

−L
cos

nπx

L
cos

mπx

L
dx =

{

2L (n = m = 0),

Lδnm (otherwise),

∫ L

−L
sin

nπx

L
sin

mπx

L
dx =

{

0 (n = m = 0),

Lδnm (otherwise),
∫ L

−L
sin

nπx

L
cos

mπx

L
dx = 0 (all n,m).

Proof. If n = m = 0, then

6 This section corresponds to §1.1 of the textbook.



8 Math 454

∫ L

−L
cos

nπx

L
cos

mπx

L
dx =

∫ L

−L
1 ·1dx = 2L.

Suppose that at least one of n,m is nonzero. We have

∫ L

−L
cos

nπx

L
cos

mπx

L
dx =

1

2

∫ L

−L

(

cos
(n−m)πx

L
+ cos

(n+m)πx

L

)

dx

If n 6= m nor n 6=−m, then

∫ L

−L
cos

nπx

L
cos

mπx

L
dx =

1

2

[

L

(n−m)π
sin

(n−m)πx

L

∣

∣

∣

∣

L

−L

+
L

(n+m)π
sin

(n+m)πx

L

∣

∣

∣

∣

L

−L

]

= 0.

If n =±m (m 6= 0), then

∫ L

−L
cos

nπx

L
cos

mπx

L
dx =

1

2

∫ L

−L
cos

0 ·πx

L
dx = L.

Thus the orthogonality relations for
∫ L
−L cos nπx

L
cos mπx

L
dx is proved. The orthog-

onality relations for
∫ L
−L sin nπx

L
sin mπx

L
dx and

∫ L
−L sin nπx

L
cos mπx

L
dx are similarly

proved. ⊓⊔

To determine A0 in (1.8), we multiply cos 0·πx
L

= 1 on both sides and integrate

with respect to x:

∫ L

−L
f (x)dx =

∫ L

−L
A0dx+

∞

∑
n=1

∫ L

−L

(

An cos
nπx

L
+Bn sin

nπx

L

)

dx =
∫ L

−L
A0dx = 2A0.

To determine Am (m = 1,2, . . . ) in (1.8), we multiply cos mπx
L

on both sides and

integrate with respect to x:

∫ L

−L
f (x)cos

mπx

L
dx =

∫ L

−L
A0 cos

mπx

L
dx+

∞

∑
n=1

∫ L

−L

(

An cos
nπx

L
+Bn sin

nπx

L

)

cos
mπx

L
dx

=
∞

∑
n=1

An

∫ L

−L
cos

nπx

L
cos

mπx

L
dx =

∞

∑
n=1

AnLδnm = LAm.

Similarly we can determine Bm (m = 1,2, . . . ) in (1.8) by multiplying sin mπx
L

on

both sides and integrate with respect to x:

∫ L

−L
f (x)sin

mπx

L
dx =

∫ L

−L
A0 sin

mπx

L
dx+

∞

∑
n=1

∫ L

−L

(

An cos
nπx

L
+Bn sin

nπx

L

)

sin
mπx

L
dx

=
∞

∑
n=1

Bn

∫ L

−L
sin

nπx

L
sin

mπx

L
dx =

∞

∑
n=1

BnLδnm = LBm.

Therefore the Fourier coefficients in (1.8) are given by
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A0 =
1

2L

∫ L

−L
f (x)dx, An =

1

L

∫ L

−L
f (x)cos

nπx

L
dx, Bn =

1

L

∫ L

−L
f (x)sin

nπx

L
dx.

(1.9)

In general, for a given function f (x) ∈ R, −L < x < L, the trigonometric series

with coefficients (1.9) is called the Fourier series of f .

Example 7. Let us calculate the Fourier series of f (x) = x, −L < x < L. We have

A0 =
1

2L

∫ L

−L
xdx = 0,

An =
1

L

∫ L

−L
xcos

nπx

L
dx =

1

L

[

L

nπ
xsin

nπx

L

∣

∣

∣

∣

L

−L

− L

nπ

∫ L

−L
sin

nπx

L
dx

]

= 0,

Bn =
1

L

∫ L

−L
xsin

nπx

L
dx =

1

L

[

− L

nπ
xcos

nπx

L

∣

∣

∣

∣

L

−L

+
L

nπ

∫ L

−L
cos

nπx

L
dx

]

=
2L

nπ
(−1)n+1.

Therefore we obtain

x =
∞

∑
n=1

2L

nπ
(−1)n+1 sin

nπx

L
, −L < x < L.

Even and odd functions

A function f (x) is even if f (−x) = f (x) and is odd if f (−x) =− f (x).

Example 8. x is odd and x2 is even. But x+ x2 is neither.

Example 9. cosx is even and sinx is odd. For constants a,b, sin(ax)cos(bx) is

odd because sin(−ax)cos(−bx) = [−sin(ax)][cos(bx)] = −sin(ax)cos(bx). But

sin(ax)sin(bx) is even because sin(−ax)sin(−bx)= [−sin(ax)][−sin(bx)] = sin(ax)sin(bx).

Note that
∫ L

−L
f (x)dx =







2

∫ L

0
f (x)dx (even function),

0 (odd function).

If f (x) is even, then

f (x) = A0 +
∞

∑
n=1

An cos
nπx

L
.

If f (x) is odd, then

f (x) =
∞

∑
n=1

Bn sin
nπx

L
.
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Example 10. Let us compute the Fourier series of f (x) = x, −L < x < L. Since f is

odd, A0,A1, . . . are zero. We have

Bn =
1

L

∫ L

−L
xsin

nπx

L
dx =

2

L

∫ L

0
xsin

nπx

L
dx

=
2

L

[

−x
L

nπ
cos

nπx

L

∣

∣

∣

∣

L

0

+
L

nπ

∫ L

0
cos

nπx

L
dx

]

=
2

L

[

− L2

nπ
cos(nπ)

]

= − 2L

nπ
cosnπ =

2L

nπ
(−1)n+1.

Therefore,

x =
2L

π

∞

∑
n=1

(−1)n+1

n
sin

nπx

L
, −L < x < L. (1.10)

Note that each term on the right-hand side is zero when x =±L. Because of this, the

above sum does not converge uniformly to x and there appear oscillations near −L

and L in Fig. 1.1. This is known as the Gibbs phenomenon 7, which shows up when

the function has discontinuities.

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0 1 term

10 terms

50 terms

y = x

Fig. 1.1 Example 10. x = 2L
π ∑N

n=1
(−1)n+1

n
sin nπx

L
, −L < x < L, where L = 1, and N = 1,10,50.

7 See §1.3 of the textbook.
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The following formulas are useful.

∫ L

−L
xk sin

nπx

L
dx =

[

−Lxk

nπ
cos

nπx

L

]L

−L

+
Lk

nπ

∫ L

−L
xk−1 cos

nπx

L
dx,

∫ L

−L
xk cos

nπx

L
dx =

[

Lxk

nπ
sin

nπx

L

]L

−L

− Lk

nπ

∫ L

−L
xk−1 sin

nπx

L
dx.

Periodic functions

A function f (x), −∞ < x < ∞, is 2L-periodic if f (x+2L) = f (x) for x ∈ (−∞,∞).
Note that sin(nπx/L) and cos(nπx/L) are 2L-periodic:

sin
nπ(x+2L)

L
= sin

(nπx

L
+2nπ

)

= sin
nπx

L
,

cos
nπ(x+2L)

L
= cos

(nπx

L
+2nπ

)

= cos
nπx

L
.

Therefore any convergent trigonometric series

A0 +
∞

∑
n=1

(

An cos
nπx

L
+Bn sin

nπx

L

)

defines a 2L-periodic function on −∞ < x < ∞.

We divide (−∞,∞) into intervals (2n−1)L < x < (2n+1)L (n = 0,±1,±2, . . . )
and we can focus on one of these intervals. In particular we can restrict x to −L <
x < L.

Example 11. Let us consider the Fourier series of the 2L-periodic function f (x),

f (x) =

{

−1, (2n−1)L < x < 2nL,

1, 2nL < x < (2n+1)L,

where n = 0,±1, . . . . In particular f (x) = −1 for −L < x < 0 and f (x) = 1 for

0 < x < L. Thus f is an odd function. The Fourier series is given by

f (x) =
2

π

∞

∑
n=1

1− (−1)n

n
sin

nπx

L
, −∞ < x < ∞.
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Fourier sine and cosine series

Consider the Fourier series of f (x), 0 < x < L. Since the orthogonality rela-

tions are given for the interval −L< x< L, we need to extend f . There are two

ways to extend the function. That is, the Fourier sine series and the Fourier

cosine series.

Fourier sine series

The first way is to define the odd extension fO(x) as

fO(x) =











f (x), 0 < x < L,

0, x = 0,

− f (−x), −L < x < 0.

We note that fO(x) is odd. The Fourier series is given by

fO(x) =
∞

∑
n=1

Bn sin
nπx

L
, −L < x < L,

where

Bn =
1

L

∫ L

−L
fO(x)sin

nπx

L
dx =

2

L

∫ L

0
f (x)sin

nπx

L
dx.

On the interval 0 < x < L we have

f (x) =
∞

∑
n=1

Bn sin
nπx

L
, 0 < x < L, (1.11)

where

Bn =
2

L

∫ L

0
f (x)sin

nπx

L
dx. (1.12)

This series is called the Fourier sine series.

Example 12. The Fourier sine series of f (x) = x, 0 < x < L, is obtained through the

extension fO(x). In this case fO(x) = x and we obtain the series (1.10) on 0 < x < L.

Fourier cosine series

The second way is to define the even extension fE(x) as

fE(x) =











f (x), 0 < x < L,

0, x = 0,

f (−x), −L < x < 0.
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We note that fE(x) is even. Indeed the value fE(0) is arbitrary and not necessarily

zero. The Fourier series is given by

fE(x) = A0 +
∞

∑
n=1

An cos
nπx

L
, −L < x < L,

where

A0 =
1

2L

∫ L

−L
fE(x)dx =

1

L

∫ L

0
f (x)dx,

An =
1

2L

∫ L

−L
fE(x)cos

nπx

L
dx =

2

L

∫ L

0
f (x)cos

nπx

L
dx.

On the interval 0 < x < L we have

f (x) = A0 +
∞

∑
n=1

An cos
nπx

L
, 0 < x < L, (1.13)

where

A0 =
1

L

∫ L

0
f (x)dx, An =

2

L

∫ L

0
f (x)cos

nπx

L
dx. (1.14)

This series is called the Fourier cosine series.

Thus a function f (x), 0 < x < L, is expressed either in the Fourier sine series

(1.11), (1.12), or the Fourier cosine series (1.13), (1.14). Figures 1.1 and 1.2 show

that the convergence rates of these two series are generally different.

Example 13. Let us obtain the Fourier cosine series of f (x) = x, 0 < x < L. We

extend f as

fE(x) =











x, 0 < x < L,

0, x = 0,

−x, −L < x < 0.

Indeed fE(x) = |x|.

A0 =
1

2L

∫ L

−L
fE(x)dx =

1

L

∫ L

0
xdx =

L

2
,

An =
1

2L

∫ L

−L
fE(x)cos

nπx

L
dx =

2

L

∫ L

0
xcos

nπx

L
dx

=
2

L

[

L

nπ
xsin

nπx

L

∣

∣

∣

∣

L

0

− L

nπ

∫ L

0
sin

nπx

L
dx

]

=
2L

(nπ)2
((−1)n −1) .

Therefore,

x =
L

2
+

2L

π2

∞

∑
n=1

(−1)n −1

n2
cos

nπx

L
, 0 < x < L. (1.15)
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0.0 0.5 1.0

x

0.0

0.5

1.0

1 term

10 terms

50 terms

y = x

Fig. 1.2 Example 13. x = L
2
+ 2L

π2 ∑N
n=1

(−1)n−1

n2 cos nπx
L

, 0 < x < L, where L = 1, and N = 1,10,50.

Convergence of Fourier series 8

Definition 2. For a given f (x), let us write

f (x+0) = lim
ε→0

f (x+ ε), f (x−0) = lim
ε→0

f (x− ε),

where ε > 0.

Definition 3 (Piecewise continuous). A function f (x), a< x< b, is said to be piece-

wise continuous if there is a finite set of points a = x0 < x1 < · · · < xp < xp+1 = b

such that f (x) is continuous at x 6= xi (i = 1, . . . , p), f (xi + 0) (i = 0, . . . , p) exists,

and f (xi −0) (i = 1, . . . , p+1) exists.

Definition 4 (Piecewise smooth). A function f (x), a< x< b, is said to be piecewise

smooth if f (x) and all of its derivatives are piecewise continuous.

Example 14. The function f (x) = |x|, −L < x < L, is piecewise smooth. The func-

tion f (x) = x2 sin(1/x), −L < x < L, is piecewise continuous but is not piecewise

smooth because limε→0 f ′(0± ε) does not exist. The function f (x) = 1/(x2 −L2),

8 This section corresponds to §1.2 of the textbook.
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−L < x < L, is not piecewise continuous because f (−L+ 0) and f (L− 0) are not

finite.

Theorem 2 (Convergence theorem). Let f (x), −L < x < L, be piecewise

smooth. Then the Fourier series of f converges for all x to the value
1
2

[

f̄ (x+0)+ f̄ (x−0)
]

, where f̄ is the 2L-periodic extension of f .

If f (x) is continuous on [−L,L] and f (−L) = f (L) in addition to the conditions

assumed in the above theorem, then the Fourier series uniformly converges. For

example, the Fourier series of f (x) = |x|, −L < x < L, (see (1.15)) uniformly con-

verges.

Parseval’s Theorem and Mean Square Error 9

Theorem 3 (Parseval’s theorem). Let f (x), −L < x < L,

be a piecewise smooth function with Fourier series A0 +

∑∞
n=1 [An cos(nπx/L)+Bn sin(nπx/L)]. Then,

mean square of f (x) =
1

2L

∫ L

−L
f (x)2dx = A2

0 +
1

2

∞

∑
n=1

(

A2
n +B2

n

)

.

Proof. Direct calculation of the integral using the Fourier series of f . ⊓⊔

We define the mean square error σ2
N as

σ2
N =

1

2L

∫ L

−L
[ f (x)− fN(x)]

2
dx,

where

fN(x) = A0 +
N

∑
n=1

[An cos(nπx/L)+Bn sin(nπx/L)] .

By Parseval’s theorem, we obtain

σ2
N =

1

2

∞

∑
n=N+1

(

A2
n +B2

n

)

.

9 This section corresponds to §1.4 of the textbook.
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Example 15. Let us find σ2
N for f (x) = x, −L < x < L. From Example 10, we have

A0 = An = 0 and

fN(x) =
N

∑
n=1

Bn sin
nπx

L
, Bn =

2L

nπ
(−1)n+1.

This is also the Fourier sine series of x, 0 < x < L, in Example 12. We obtain

σ2
N =

1

2

∞

∑
n=N+1

(

2L

nπ
(−1)n+1

)2

=
2L2

π2

∞

∑
n=N+1

1

n2
.

Note that

∫ ∞

N+1

1

x2
dx =

∫ ∞

N

1

(x+1)2
dx ≤

∞

∑
n=N+1

1

n2
≤
∫ ∞

N+1

1

(x−1)2
dx =

∫ ∞

N

1

x2
dx.

We have

∫ ∞

N

1

(x+1)2
dx =

1

N +1
=

1

N

(

1− 1

N
+

1

N2
− 1

N3
+ · · ·

)

,
∫ ∞

N

1

x2
dx =

1

N
.

Let us introduce the symbol O (this is called “big O”) to express the order. For some

fN , fN = O
(

N−1
)

as N → ∞ means that there exist a constant C > 0 and a number

N0 such that | fN | ≤CN−1 for all N > N0. Therefore we obtain

σ2
N =

2L2

π2

1

N

[

1+O

(

1

N

)]

= O
(

N−1
)

, N → ∞. (1.16)

We note that σ2
N goes to zero as N →∞ although we know that the sum in (1.10) does

not converge uniformly. This happened because we considered the mean square and

took the integral.

Note that each term on the right-hand side is zero when x =±L. Because of this,

the above sum to x and there appear oscillations near −L and L in Fig. 1.1.

Example 16. Let us find σ2
2N for f (x) = |x|, −L< x < L. From Example 13 we know

that Bn = 0, A2m = 0 (m = 1,2, . . . ), and

f2N(x) = A0 +
N

∑
m=1

A2m−1 cos
(2m−1)πx

L
, A0 =

L

2
, A2m−1 =− 4L

π2(2m−1)2
.

This is also the Fourier cosine series of x, 0 < x < L, in Example 13. Hence we

obtain

σ2
2N =

1

2

∞

∑
n=2N+1

A2
n =

1

2

∞

∑
m=N+1

A2
2m−1 =

8L2

π4

∞

∑
m=N+1

1

(2m−1)4
.

Note that
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∫ ∞

N

1

(2x+1)4
dx ≤

∞

∑
m=N+1

1

(2m−1)4
≤
∫ ∞

N

1

(2x−1)4
dx,

and LHS = 1
6(2N+1)3 = 1

48N3 +O
(

N−4
)

and RHS = 1
6(2N−1)3 = 1

48N3 +O
(

N−4
)

.

Therefore we obtain

σ2
2N =

L2

6π4N3
+O

(

N−4
)

= O
(

N−3
)

, N → ∞. (1.17)

Thus the Fourier series of x converges as O(1/N) and the Fourier series of |x|
converges as O(1/N3). Equations (1.16) and (1.17) explain the difference between

Figs. 1.1 and 1.2.

Complex form of Fourier series 10

Throughout this course, we use a bar to indicate complex conjugate. That is, if

c = a+ ib, then c = a− ib. Suppose f (x) ∈ R is given. Using Euler’s formula (1.1),

we can rewrite the Fourier series of f as follows.

f (x)=A0+
∞

∑
n=1

(

An cos
nπx

L
+Bn sin

nπx

L

)

=A0+
∞

∑
n=1

(

An − iBn

2
einπx/L +

An + iBn

2
e−inπx/L

)

.

We define

α0 = A0, αn =
An − iBn

2
, α−n =

An + iBn

2
.

We obtain

f (x) = α0 +
∞

∑
n=1

(

αneinπx/L +α−ne−inπx/L
)

=
∞

∑
n=−∞

αneinπx/L. (1.18)

This is the Fourier series in complex form. Using (1.9), αn (n = 0,±1,±2, . . . ) are

given by

αn =
1

2L

∫ L

−L
f (x)e−inπx/Ldx. (1.19)

We have the following orthogonality relations.

∫ L

−L
einπx/Le−imπx/Ldx =

∫ L

−L
ei(n−m)πx/Ldx = 2Lδmn.

10 This section corresponds to §1.5 of the textbook.
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With the help of the orthogonality relations, we can directly obtain (1.19) by inte-

grating both sides of (1.18):

∫ L

−L
f (x)e−inπx/Ldx =

∫ L

−L

(

∞

∑
n′=−∞

αn′e
in′πx/L

)

e−inπx/Ldx

=
∞

∑
n′=−∞

αn′

∫ L

−L
ei(n′−n)πx/Ldx =

∞

∑
n′=−∞

αn′2Lδnn′ = 2Lαn.

We can write Parseval’s theorem as follows in complex form.

1

2L

∫ L

−L
f (x)2dx =

∞

∑
n=−∞

|αn|2.

This is seen by the calculation below.

1

2L

∫ L

−L
f (x)2dx = A2

0 +
1

2

∞

∑
n=1

(

A2
n +B2

n

)

= A2
0 +2

∞

∑
n=1

An − iBn

2

An + iBn

2

= α2
0 +2

∞

∑
n=1

αnα−n = α2
0 +

∞

∑
n=1

|αn|2 +
∞

∑
n=1

|α−n|2

= α2
0 +

∞

∑
n=1

|αn|2 +
−1

∑
n=−∞

|αn|2

=
∞

∑
n=−∞

|αn|2.


