Chapter 1
Introduction and preliminaries

Partial differential equations '

What is a partial differential equation?

ODEs (Ordinary Differential Equations) have one variable (x). PDEs (Partial Dif-
ferential Equations) have multiple variables (x,y,...).

For f(x) with one variable x, we know f’(x) = %. For u(x,y), we introduce
partial derivatives as

du du
ox T dilyisfixed
Similarly,
g—ib; = afu = Uyy.

Example 1. For u(x,y) = xy*, we have
Uy = yz, e =0, uy=2xy, uy =2x.
Example 2. The equations below are PDEs.

uyy —uy =0  (the heat equation)
Uy — Uy, =0 (the wave equation)

Uy +uyy, =0  (Laplace’s equation)

The order of a PDE is the order of the highest-order derivative in the equation.
The above examples are second order. The equation u, + u, = 0 is first order.
Let us write a PDE as
Lu=g,

where g is independent of u. In the case of the wave equation, . = 92 — Byz. The
equation with . = 97 + 9} and some function g(x,y) is called Poisson’s equation.
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If we have
Lu+v)=Lu+2v, ZL(cu)=cZu,

for any functions u, v and constant ¢, then .Z is a linear differential operator and the
equation is said to be linear. If g = 0, then the equation is called homogeneous. The
heat equation, wave equation, and Laplace’s equation are all linear homogeneous
equations. Poisson’s equation is a linear nonhomogeneous PDE.

Classification of second-order PDEs

In this course we will mainly consider second-order equations. In general, second-
order PDEs are written as

a(x,y) iy +b(x,y)ttxy 4 c(x,y)ttyy 4+ d (x,y)ux +e(x,y)uy + f(x,y)u = g(x,y),

with coefficients a,b,c,d, e, f and source term g. We assume a® 4+ b> + ¢ # 0 (at
least one of a,b,c is nonzero). These equations are classified as follows by the co-
efficients a, b, c.

4ac—b* >0 elliptic
4ac—b* =0 parabolic
4ac—b* <0 hyperbolic

Let o, B,y be constants. Note that 2 ellipses (x/a)? 4 (y/B)? = 1 satisfy 4(1/a?)(1/B?) —
0? > 0, parabolas y* = 4yx satisfy 4-0-1 —0? = 0, and hyperbolas (x/o)? —
(v/B)? = 1 satisfy 4(1/a?)(—1/B%) — 0> < 0.

2 For constants a, b, c, let us consider the symmetric matrix A = ( b72 bé 2 ) . Then we have

2 2 2 2 92, P
Aty + bty + cuyy = Y Y Ajjuij =Y ZAi.iﬁ = (dx dy)A <8§) .
1 i9j

i=1j= i=1j=1

Let A = A1, A, be the eigenvalues of A.

-1 b2 1
det<ab/2 cfl):o & lzi[a-&-cﬂ: (a+c)2+D},

where D = b* — 4ac. Therefore,
elliptic & D<0 & A4 >04>0 o A;<0,4, <0,

parabolic < D=0 < A =0,A4#0 or A #0,4 =0,
hyperbolic < D>0 << A4 <0,A,>0 or A >0,1<0.
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The heat equation is parabolic and the wave equation is hyperbolic. Laplace’s
equation and Poisson’s equation are elliptic.

Complex Numbers

Let us recall Euler’s formula

eie:cose+isin0, (1.1)
where i = /—1, i> = —1. We can write cos 6, sin 6 using exponential functions:
0, ,—i0 0 _ i
e +e . e —e
cos = —, sin@=———.
2 ’ 2i

Note that coshx and sinhx are defined similarly:
X —X X ,—X
coshx = i, sinhx = e-e
2
Note also the following relations.

cos? 0 +sin’0 =1, cosh’x—sinh’x =1,

cos(if) =cosh @, sin(if) =isinh®, cosh(ix) =cosx, sinh(ix) =isinx.

Review of ODEs (1) 3

Let us consider ODEs of y(x).

Separable

Sometimes we can separate x and y in the equation. In such a case, the equation is
said to be separable.

Example 3. Let us solve y/ = —6xy. We can rewrite this as
d
D _ _6xar.
y

3 See A.1 of the textbook.
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d
We integrate both sides: / @ / (—6x)dx. Thus we obtain In |y| = —3x?> +C’, and
J oy .

2 . .
hence y = Ce™3*", where C (= iec/) is an arbitrary constant.

Linear first-order equations

Consider
Y @)+ p()y(x) =q(x),  y(x0) =yo.
This type can always be solved as follows. By multiplying the integrating factor
x N gt d Jiy P&)dx"] iy P& )dx
exp ( [y, P(x')dx" ), we have 7 |y(x)e™o = g(x)e’o . Therefore,

dx

X A X o AN
Y= e Foptix { / ()PP g +y0}
X0

Example 4. (x> + 1)y +3xy = 6x, y(0) = 3 is solved as y(x) = 2+ (x> +1)73/2.

Homogeneous second-order linear equations

Consider y” + p(x)y’ + g(x)y = 0. The general solution is given by a superposition
(linear combination) of two linearly independent solutions y;,y»: y(x) = Cyy; (x) +
Coya(x). (Cry1 + Cayp = 0 for all x only when C; = C, =0.)

Constant Coefficients

Consider ay” + by +cy =0 (a # 0). By y = ¢’*, we obtain ar® + br+c = 0.
From this characteristic equation, we obtain two solutions y;(x) = ¢"* and

—b++/b%2—4ac
a

ya(x) = €*, where ri,r, = -
as

, and the general solution is written

y(x) = Cre"* + Cre™ .

If ar® + br+ ¢ = 0 has complex roots o +if3, then the general solution can be written
as ' ‘
¥(x) = C1el TP 4 Cyel @B — 0% () cos Bx+ ¢asin Bx)

where ¢; =C) +Ca, ¢ = i(C) — Cy).
If the characteristic equation has equal roots r; = r, = r, then two linearly inde-
pendent solutions are found as y; = ¢ and y, = xe’*. Thus the general solution is
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given by
y(x) = Cy1(x) + Coya(x) = (C1 + Cox) €™,

Example 5. Let us solve y” +2y +y =0, y(0) =5, y'(0) = —3. The characteristic
equation is 72 4+ 2r+1 = (r+1)> = 0. Thus r; = r, = —1. The general solution
is written as y(x) = (C; + Cyx) e~*. By the conditions at x = 0, we get C; =5 and
C, = 2. We obtain y(x) = (54 2x)e .

Separation of variables *

Many linear PDEs can be reduced to linear ODEs with the method of separation of
variables, described below.
We look for a separated solution (this is an ansatz>)

u(x,y) = X ()Y (y)-
Consider Laplace’s equation i, + uy, = 0. We obtain

X// Y//
X'Y+XY"=0 = “—4+—=0.
* X * Y

This implies X" /X and Y” /Y are constants.

Let A be a constant and we write

X"4+AX =0, Y'—AY =0.

We call A the separation constant. At this moment A is arbitrary. Thus the PDE
reduced to two ODE:s.
If A = 0, then two ODEs have the following linearly independent solutions.

X=1,x, Y=1,y.
If A # 0, then two ODEs have the following linearly independent solutions.

X=eV M oV y Vi VY (1.2)

In either case, the solution is given by superpositions:

4 This section corresponds to §0.2 of the textbook.

5 an assumption or a guess to be verified later.
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(A1x+A2)(Biy+By), A=0,
= 1.3
! (Alem" +A2e—ﬂ") (Blem’ +Bze—ﬂ>') . A0, (1)

where A;,A», B}, B, are constants. For A > 0, by writing A = k> (k > 0) we have
u(x,y) = (Ale”“+A2e—”“) (Bleky +Bze—">') , (1.4)
and for A < 0, by writing A = —I* (I > 0) we have
u(x,y) = (Alelx —|—A2e*[x) (Bleily —I—Bge’ﬂy) . (1.5)
Instead of (1.2) we can also choose
X =cos (\/Ix) , sin (\/Ix) , Y = cosh (\/Iy) , sinh (\/Iy) .

In this case we have

u(x,y) = (Aj cos(kx) + Az sin(kx)) (B; cosh(ky) + By sinh(ky)), (1.6)
u(x,y) = (Ajcosh(lx) + Az sinh(lx)) (Bj cos(ly) + B sin(ly)). (L.7)

Note that (1.6) becomes (1.4) and (1.7) becomes (1.5) by redefining the coefficients.
We call solutions such as (1.3) through (1.7) separated solutions because they are
given in the form u(x,y) = X (x)Y (y).

The separation constant A and coefficients Aj,A,, By, B; are partially determined
by boundary conditions. Suppose that our Laplace’s equation is considered in the
region 0 <x < L, 0 <y < oo with boundary conditions

u(0,y) =0, u(L,y)=0, u(x,0)=0.

We find that u = (Ajx+A2)(B1y+ Bz) in (1.3) satisfies the boundary conditions
only when u = 0.

We then find that (1.5) and (1.7) satisfy the conditions u(0,y) = u(L,y) = 0 only
when A; = A> = 0. That is, only the solution u = 0 satisfies the boundary conditions.

Finally (1.4) and (1.6) satisfy #(0,y) = u(L,y) =0 when A} =0 and k = nm/L,
where n is an integer. Furthermore we find B; = 0 by the condition «(x,0) = 0. That
is, the solution A, B; sin(kx) sinh(ky) with k =nm/L (n =0,+1,42,...) satisfies the
boundary conditions.

Therefore we obtain the following separated solutions of Laplace’s equation sat-
isfying the boundary conditions.

nwy

TT.
u(x,y) = Asin == sinh 2, n=1.2,....
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where A is a constant. Note that we still have infinitely many solutions. In general A
depends on n. To have a unique solution, we need one more condition and need to
use Fourier series.

Fourier series °

Let Ag,A1,Bj,... be constants. The series below is called a trigonometric series.
> nmwx nmwx
Ag+ (A cos— + B sin—).
0 ,; n L n L

Suppose that a function f(x) € R, —L < x < L, is given by a trigonometric series:

> nmwx . nmx
f(x):Ao—i—Z (A"COST+B"SIHT)' (1.8)
n=1

Example 6. The function f(x) = cos(nx/L), —L < x < L, is given by the trigono-
metric series withA; =land Ag =A, =A3=---=Bl=B2=---=0.

For a given f(x), we can determine the coefficients Ag,A,, B, making use of
orthogonality relations.

Definition 1. The Kronecker delta J,,, is defined as

1, m=n,

61nn:
{0, m# n.

Theorem 1 (Orthogonality relations). Let n,m be integers. We assume L >
0. The following orthogonality relations hold.

/L nwx  mux 2L (n=m=0),
L8, (otherwise),
/L . NTX . mux 0 (n=m=0),
sin — sin ——dx = )
L Lo,y (otherwise),
/L nmx  mux

sin—cos——dx=0 (alln,m).
L L IL,

Proof. If n=m =0, then

6 This section corresponds to §1.1 of the textbook.
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L
/ cosnTmcosm—ﬂxdx—/ 1-1dx=2L.
—L

Suppose that at least one of n,m is nonzero. We have

L nrm T 1 /L o i
/ cos T cos Tt dy = = (cos (n ;n) ~ +cos (’H_Ln) x)dx

If n = +m (m # 0), then

L nwx  mux 'L
COS —— COS —dx = cos
_L L 2

=L

Thus the orthogonality relations for [* 1 cos "% cos " dx is proved. The orthog-

onality relations for [, sin 2 sin ™ dx and %, sin 17X cos ™M dx are similarly
proved. O

To determine Ag in (1.8), we multiply cos &2 =

with respect to x:

= 1 on both sides and integrate

/f dx—/ Aodx+2/ (Ancos 25 4B, sin 2 dx—/ Agdx =2Aq.

To determine A,, (m = 1,2,...) in (1.8), we multiply cos = on both sides and
integrate with respect to x:

nmwx
—d =/ a —d (4, B, )cos "
/ f(x)cos X = / 0Cos x+2/ cos + sin — 2 CcoS 2 X
- nExX  mmx
— ; / ©0s —— 08 — —dx= ZA Lo,, = LA,,.

Similarly we can determine B,, (m = 1,2,...) in (1.8) by multiplying sin = on
both sides and integrate with respect to x:

nmx mmx
/ flx s1n—dx—/ Aosm—dx—i-Z/ A cos +Bn sin — 7 )sdex
:ZB/ sm—smm—mdx—ZB L6, = LB,,.

Therefore the Fourier coefficients in (1.8) are given by
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1 L 1 /L -
M=z [ fWax = [ soeos"Tax b= [ stosin P

(1.9)
In general, for a given function f(x) € R, —L < x < L, the trigonometric series
with coefficients (1.9) is called the Fourier series of f.

Example 7. Let us calculate the Fourier series of f(x) =x, —L < x < L. We have

1 /L
Ag = i[ xdx =0,

/ X, 1| L nmx |F L (L . nirxd
xcos— x = — —xsm— - — sin —dx| =
=1 L L |, nt)p L ’
1 L T T 2L
B, / xsm—dx—f ——xcosu —/ osudx = (=1
L L nmw nw
Therefore we obtain
.- n+l nmwx
n—-, —L<x<L.
; L *

Even and odd functions

A function f(x) is even if f(—x) = f(x) and is odd if f(—x) = —f(x).
Example 8. x is odd and x? is even. But x 4 x is neither.

Example 9. cosx is even and sinx is odd. For constants a,b, sin(ax)cos(bx) is

odd because sin(—ax)cos(—bx) = [—sin(ax)|[cos(bx)] = —sin(ax)cos(bx). But
sin(ax) sin(bx) is even because sin(—ax) sin(—bx) = [—sin(ax)][— sin(bx)] = sin(ax) sin(bx).
Note that
L
/L Fo)dx = 2 /0 f(x)dx (even function),
L

0 (odd function).
If f(x) is even, then
f(x)=Ap+ iA,,cos n_Zx
n=1
If f(x) is odd, then

= nmwx
X) = Z B, sin —

n=1
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Example 10. Let us compute the Fourier series of f(x) =x, —L < x < L. Since f is
odd, Ag,A,... are zero. We have

nix 2 (L nix
B, / xsm—dx— f/ xsin —dx
L L Jo L

2 L nmwx L+ L /L mrxd 21 12 (nr)
= — | —x—cos— — [ cos—dx| =~ |——cos(n
L L |, nmlJjo L L nmw
2L
= —"cosnm = —(—1)""!
n nm
Therefore,
2L & (—1)H! T
— Z smu —L<x<L. (1.10)
T = L

Note that each term on the right-hand side is zero when x = 3-L. Because of this, the
above sum does not converge uniformly to x and there appear oscillations near —L
and L in Fig. 1.1. This is known as the Gibbs phenomenon ’, which shows up when
the function has discontinuities.

1.0 — 1 term
— 10 terms
— 50 terms
05 — y=—u
0.0
—0.5} .
—-1.0 1
—-1.0 —0.5 0.0 0.5 1.0
T
Fig. 1.1 Example 10. x = E N, (712"“ sin ¥, —L < x < L, where L= 1, and N = 1,10, 50.

7 See §1.3 of the textbook.
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The following formulas are useful.

L . nm Lx* o Lk L s
/ xl‘smudx: ——cosu +— *eos udx,
L L nmw L | ; nm/-L L

L k L L
nwx Lx* . nmx Lk 4 . nmx
/ ¥ cos ——dx = | — sin — - — X lgin —dx.
L L nmw L L /oL L

Periodic functions

A function f(x), —eo < x < oo, is 2L-periodic if f(x+2L) = f(x) for x € (—eo,00).
Note that sin(nzx/L) and cos(nmx/L) are 2L-periodic:

. nm(x+2L) . /n7x . ATX
sin ———~ =sin (— +2n7t) = sin —,
L L L
T 2L . T
cosw = cos (u +2n7r) — cos =2,
L L L

Therefore any convergent trigonometric series

> nmwx nmwx
A (A cos— +B sin—)
oJrng,1 n€0s ==+ B, sin —

defines a 2L-periodic function on —eo < x < oo,
We divide (—oo,00) into intervals (2n— 1)L <x < (2n+1)L (n =0,£1,42,...)

and we can focus on one of these intervals. In particular we can restrict x to —L <
x < L.

Example 11. Let us consider the Fourier series of the 2L-periodic function f(x),

-1, (2n—1)L<x<2nL,
flx) =
1, 2nL<x< (2n+1)L,
where n = 0,%1,.... In particular f(x) = —1 for —L < x < 0 and f(x) =1 for
0 < x < L. Thus f is an odd function. The Fourier series is given by

2 & 1—(—=1)" . nmx
f(.x):;n;lﬁslnT, —oo0 < x < oo,
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Fourier sine and cosine series

Consider the Fourier series of f(x), 0 < x < L. Since the orthogonality rela-
tions are given for the interval —L < x < L, we need to extend f. There are two
ways to extend the function. That is, the Fourier sine series and the Fourier
cosine series.

Fourier sine series

The first way is to define the odd extension fo(x) as

fx), 0<x<L,
fo(x): 07 )C:O7
—f(=x), —L<x<0.

We note that fp(x) is odd. The Fourier series is given by

> b
folx) = Zanin%, L<x<lL,
n=1

where 1 L nwx 2 (L nmx
Bi= LLfO(x) sin - dx = /0 Fx)sin .
On the interval 0 < x < L we have
f(x):’ianinan, 0<x<L, (1.11)
where 5 1L o
B, = Z/o £ (x)sin —~dx. (1.12)

This series is called the Fourier sine series.

Example 12. The Fourier sine series of f(x) = x, 0 < x < L, is obtained through the
extension fp(x). In this case fo(x) = x and we obtain the series (1.10) on 0 < x < L.

Fourier cosine series

The second way is to define the even extension fg(x) as

flx), 0<x<L,
fE(x) = 0, x=0,
f(=x), —L<x<0.
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We note that fg(x) is even. Indeed the value f£(0) is arbitrary and not necessarily
zero. The Fourier series is given by

> T
JE(x) = Ao+ ZAncosnL—x, —L<x<L,
n=1

where

1 /L 1 /L
Ao =57 [ fetodr=1 [ seax

1 (L nmwx 2 (L nmwx
Ay = i[LfE(X)COSTdX— Z/o f(x)COSde-

On the interval 0 < x < L we have
> b
Fx) =Ag+ ZA,,cos”—Lx, 0<x<L, (1.13)
n=1

where

L L
- %/0 f(x)dx, Ay = %/0 f(x)cos ”Lﬂdx. (1.14)

This series is called the Fourier cosine series.

Thus a function f(x), 0 < x < L, is expressed either in the Fourier sine series
(1.11), (1.12), or the Fourier cosine series (1.13), (1.14). Figures 1.1 and 1.2 show
that the convergence rates of these two series are generally different.

Example 13. Let us obtain the Fourier cosine series of f(x) =x, 0 < x < L. We
extend f as
x, 0<x<L,

fE(x)z 0, x:O,
—x, —L<x<0.

Indeed fz(x) = |x|.

L
Ao = 1 _L
0 2L/ felx /de

A, = ZL/ Sfe(x cos—dx_ L/ xcos@dx

L (L nnx 1 2L

- — sin —dx
L

Therefore,

s, 0<x<L (1.15)



14 Math 454

1.0
— 1term
— 10 terms
— 50 terms
— y=—uz

0.5+ i

0. :

%.0 0.5 1.0
e
Fig. 1.2 Example 13.x= £ + 2 yN | GOl ognmx 0 <y < [, where L=1,and N = 1,10,50.

Convergence of Fourier series

Definition 2. For a given f(x), let us write
Flr+0) = lim f(x-€),  f(x—0) = lim f(x—e),
£—0 e—0
where € > 0.

Definition 3 (Piecewise continuous). A function f(x), a < x < b, is said to be piece-
wise continuous if there is a finite set of points a = xo <x] < --- <Xxp < Xpy1 =b
such that f(x) is continuous at x # x; (i = 1,...,p), f(x; +0) (i =0,..., p) exists,
and f(x; —0) (i=1,...,p+ 1) exists.

Definition 4 (Piecewise smooth). A function f(x), a < x < b, is said to be piecewise
smooth if f(x) and all of its derivatives are piecewise continuous.

Example 14. The function f(x) = |x|, —L < x < L, is piecewise smooth. The func-
tion f(x) = x*sin(1/x), —L < x < L, is piecewise continuous but is not piecewise
smooth because limg o f'(0 = &) does not exist. The function f(x) = 1/(x*> — L?),

8 This section corresponds to §1.2 of the textbook.
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—L < x < L, is not piecewise continuous because f(—L+0) and f(L — 0) are not
finite.

Theorem 2 (Convergence theorem). Ler f(x), —L < x < L, be piecewise
smooth. Then the Fourier series of f converges for all x to the value
% [f(x+0)+ f(x—0)], where f is the 2L-periodic extension of f.

If f(x) is continuous on [—L,L] and f(—L) = f(L) in addition to the conditions
assumed in the above theorem, then the Fourier series uniformly converges. For
example, the Fourier series of f(x) = |x|, —L < x < L, (see (1.15)) uniformly con-
verges.

Parseval’s Theorem and Mean Square Error °

Theorem 3 (Parseval’s  theorem). Ler f(x), —-L < x < L
be a piecewise smooth function with Fourier series Ay +
Y [Aycos(nmx/L) + By sin(nmx/L)|. Then,

| e
A2+ 2, p2
= E A B
mean square of f(x) =3 / Ap+ ) +
Proof. Direct calculation of the integral using the Fourier series of f. ad
We define the mean square error G as
On =75, / (x)] dx,

where N
Sv(x)=Ao+ Z [A, cos(nmx/L) + B, sin(nmx/L)].
n=1

By Parseval’s theorem, we obtain

9 This section corresponds to §1.4 of the textbook.
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Example 15. Let us find Gﬁ, for f(x) =x, —L < x < L. From Example 10, we have
Ag=A, =0and

2L

— -1 n+1'
Gl

N
. nmx
fvlx) = Z B, sin ——, B,
n=1

This is also the Fourier sine series of x, 0 < x < L, in Example 12. We obtain

1 & <2L S S |
2 n+1
Oy == —(=1) ) = — —.
2}1:;+] nmw TEZ n:;Jrl 2
Note that
Sl | i 1 R | o 1 ]
—dx:/ ——dx < —g/ 7dx:/ —dx.
/N+1 x2 N (x+1)2 n=§’+1 n? = Iy (x—1)? N X2
We have

/°° 1 d 1 1 1 1 n 1 1 n /°° 1 d 1

X = = — —_— R EER I —dx = —.
N (x+1)2 N+1 N N Nz N3 N X2 N
Let us introduce the symbol O (this is called “big O”) to express the order. For some

In, fn=0 (N ’1) as N — oo means that there exist a constant C > 0 and a number
Ny such that | fy| < CN~! for all N > N. Therefore we obtain

207 1 1
G,%,:EZN{I+0<N>}:O(N D, N-— e (1.16)
We note that 0',%, goes to zero as N — oo although we know that the sum in (1.10) does
not converge uniformly. This happened because we considered the mean square and
took the integral.

Note that each term on the right-hand side is zero when x = L. Because of this,
the above sum to x and there appear oscillations near —L and L in Fig. 1.1.

Example 16. Let us find 63y, for f(x) = |x|, —L < x < L. From Example 13 we know
that B, = 0, Agyy = 0 (m = 1,2,...), and

(2m—1)mx

N
sz(x) =Ap+ Z Arp_1COS i3 ,

m=1

L 4L
AO:E

Ay | =———5.

This is also the Fourier cosine series of x, 0 < x < L, in Example 13. Hence we
obtain

1 = 1 = Q12 = 1

2 2 2

A=ty ply g oy 1
2 n=2N+1 " 2m=N+1 " mt =N 1 (2m— 1)4

Note that
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°° 1 - 1 i 1
———dx < — < / ———dx,
/N (2x+1)* 7m:;’+] Cm—1)*~ /v 2x—1)4
_ 1 _ _ 1 —4
Therefore we obtain
G§N2L+O(N’4):0(N’3) N — oo (1.17)
6m4N3 ’

Thus the Fourier series of x converges as O(1/N) and the Fourier series of |x|
converges as O(1/N?). Equations (1.16) and (1.17) explain the difference between
Figs. 1.1 and 1.2.

Complex form of Fourier series '°

Throughout this course, we use a bar to indicate complex conjugate. That is, if
¢ =a+ib, then ¢ = a—ib. Suppose f(x) € R is given. Using Euler’s formula (1.1),
we can rewrite the Fourier series of f as follows.

A,+iB, _.
flx)= Ao—i—z (A cos 7 +B,,s1n ) A0+Z ( By, mrcX/L_i_%e um'x/L)C
We define A - A i

i i
(X():A(), o, = n2 n7 o, = n2 n.
We obtain
Fx) = ao+ Z (aneinn'x/L_*_a_nefinn'x/L) _ Z 0L (1.18)
n=1 n=—o0

This is the Fourier series in complex form. Using (1.9), o, (n = 0,+1,+2,...) are
given by

o — - / " e Ly, (1.19)
" oL )1

We have the following orthogonality relations.

L L
/ einn’x/Lefimn:x/de _ / ei(nfm)ﬂ:x/de = 2LSm.
=L, =L,

10 This section corresponds to §1.5 of the textbook.
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With the help of the orthogonality relations, we can directly obtain (1.19) by inte-
grating both sides of (1.18):

L . L o . '
/ f(x)efznn'X/de — / < Z an/em n'x/L) efmﬂx/de
—L

—L n'=—oo
=

oo L L
Y o [ Le’(” gy =Y 0218,y =2Lay.

/= —o0

n'=-—oo n

We can write Parseval’s theorem as follows in complex form.

~ 2 2

=g +2Y oo =05+ Y |o*+ Y a,|?
n=1 n=1 n=1

1
Z [

n=-—oo

g+ Y Jowl*+
n=1

I
™
8
o



