Math 454

Problem Set 11 (4/9, 4/11, 4/14, 4/16, 4/18) Due on Fri, Apr 18

- 1) Solve $u_t + u_x = 0$, $-\infty < x < \infty$, 0 < t with the initial condition $u(x, 0) = \cos x$, $-\infty < x < \infty$. Solution: $u(x, t) = \cos(x - t)$.
- 2) Solve $tu_t + xu_x + 2u = 0$, $-\infty < x < \infty$, 1 < t with the initial condition $u(x, 1) = \sin x$, $-\infty < x < \infty$. (*Hint:* s = 0 corresponds to the initial condition.) Solution: $u(x, t) = \frac{1}{t^2} \sin(x/t)$.
- 3) Solve u_{tt} = u_{xx}, -∞ < x < ∞ with the initial conditions u(x, 0) = 0, u_t(x, 0) = x by finding characteristics.
 Solution: u(x,t) = xt.
- 4) Find the solution of the heat equation $u_t Ku_{xx} = h$ for $0 < x < \infty$ satisfying the boundary condition $u_x(0,t) = 0$ and the initial condition u(x,0) = 0. Solution: $u(x,t) = \int_0^t \int_0^\infty [4\pi K(t-s)]^{-1/2} \left[e^{-(x-x')^2/4K(t-s)} + e^{-(x+x')^2/4K(t-s)} \right] h(x',s) dx' ds.$
- 5) Find the solution of the heat equation $u_t Ku_{xx} = h$ for 0 < x < L satisfying the boundary conditions u(0,t) = 0, u(L,t) = 0, and the initial condition u(x,0) = 0. Solution: $u(x,t) = \sum_{m=-\infty}^{\infty} \int_0^t \int_0^L [4\pi K(t-s)]^{-1/2} \times \left[e^{-(x-x'-2mL)^2/4K(t-s)} - e^{-(x+x'-(2m+2)L)^2/4K(t-s)}\right] h(x',s)dx'ds.$
- 6) Find the solution of the heat equation $u_t = K u_{xx}$, 0 < x < L, satisfying the boundary conditions $u_x(0,t) = 0$, $u_x(L,t) = 0$ and the initial condition u(x,0) = f(x), a piecewise smooth function. Solution: $u(x,t) = \frac{1}{\sqrt{4\pi Kt}} \sum_{m=-\infty}^{\infty} \int_0^L \left[e^{-(x-x'-2mL)^2/4Kt} + e^{-(x+x'-(2m+2)L)^2/4Kt} \right] f(x') dx'.$
- 7) Find the Green's function G(x, x') for y'' = -f(x), y(0) = 0, y'(L) = 0, such that $y(x) = \int_0^L G(x, x') f(x') dx'$. Solution: $G(x, x') = \min(x, x')$.
- 8) Consider G(x, x') which obeys $G_{xx} = -\delta(x x')$, G(0, x') = 0, $G_x(L, x') = 0$. Find G(x, x') in terms of the eigenvalues λ_n and eigenfunctions $\phi_n(x)$ of the Sturm-Liouville problem, $\phi''_n + \lambda_n \phi_n = 0$, $\phi(0) = 0$, $\phi'(L) = 0$. Normalize $\phi_n(x)$ so that $\int_0^L \phi_n(x)^2 dx = 1$.

Solution: This semester we studied a lot and our understanding of PDEs has been significantly deepened. So, I hope you will find the solution to this very last problem by yourself.