Problem Set 9 (3/19, 3/21, 3/26)
Due on Fri, Apr 4

1) Find the general solution of $\nabla^{2}[f(r)]=0$.

Solution: $f(r)=A+B / r$, where A, B are arbitrary constants.
2) Solve $\nabla^{2}[f(r)]=-1$ with the boundary condition $f(a)=0$ and $f(0)$ finite.

Solution: $f(r)=\left(a^{2}-r^{2}\right) / 6$.
3) Find the solution $u(r, t)$ of the heat equation $u_{t}=K \nabla^{2} u,-\infty<t<\infty$, in the sphere $0 \leq r<a$ satisfying the boundary condition $u(a, t)=3 \cos 2 t$.
Solution: We use $u(a, t)=3 e^{2 i t}$ and take the real part in the end. $u(r, t)=$ $\frac{3 a}{r} \operatorname{Re}\left[e^{c(r-a)(1+i)} e^{2 i t} \frac{1-e^{-2 c r(1+i)}}{1-e^{-2 c a(1+i)}}\right]$, where $c=1 / \sqrt{K}$.
4) (a) Compute $P_{1}^{\prime}(0), P_{2}^{\prime}(0), P_{3}^{\prime}(0), P_{4}^{\prime}(0)$ by differentiating Legendre polynomials.
(b) Find $P_{2 n+1}^{\prime}(0)$ and $P_{2 n}^{\prime}(0)(n=0,1,2, \cdots)$ using Rodrigues' formula.

Solution: (a) $P_{1}^{\prime}(0)=1, P_{2}^{\prime}(0)=0, P_{3}^{\prime}(0)=-3 / 2, P_{4}^{\prime}(0)=0$. (b) $P_{2 n+1}^{\prime}(0)=$ $(-1)^{n} \frac{(2 n+2)!}{n!(n+1)!2^{2 n+1}}$ and $P_{2 n}^{\prime}(0)=0$.
5) Let $f(s)=0$ for $-1<s<0$ and $f(s)=1$ for $0<s<1$. Find the expansion of $f(s)$ in a series of Legendre polynomials.
Solution: $\frac{1}{2}+\sum_{k=1}^{\infty} \frac{2 k+1}{2 k(k+1)} P_{k}^{\prime}(0) P_{k}(s)=\frac{1}{2}[f(s-0)+f(s+0)],-1<s<1$.
6) Find the solution of Laplace's equation $\nabla^{2} u=0$ in the sphere $0 \leq r<a$ satisfying the boundary condition $u(a, \theta)=1$ if $0<\theta<\pi / 2$ and $u(a, \theta)=0$ otherwise.
Solution: $u(r, \theta)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{(2 k+1) P_{k}^{\prime}(0)}{2 k(k+1)}\left(\frac{r}{a}\right)^{k} P_{k}(\cos \theta)$.

