Problem Set 8 (3/12, 3/14, 3/17)

Due on Fri, Mar 28

1) Let $\left\{x_{n}\right\}$ be the nonnegative solutions to $J_{m}\left(x_{n}\right) \cos \beta+x_{n} J_{m}^{\prime}\left(x_{n}\right) \sin \beta=0$, where $m \geq 0$ and $0 \leq \beta \leq \pi / 2$. Prove

$$
\int_{0}^{1} J_{m}\left(x x_{n_{1}}\right) J_{m}\left(x x_{n_{2}}\right) x d x=0 \quad n_{1} \neq n_{2} .
$$

Solution: If we define $y_{i}(x)=J_{m}\left(x x_{n_{i}}\right)$, then the Bessel equation becomes $\left(x y_{i}^{\prime}\right)^{\prime}+\left(x x_{n_{i}}^{2}-\frac{m^{2}}{x}\right) y_{i}=0$. We then multiply the equation for y_{1} by y_{2} and integrate both sides over x. Interchanging the roles of y_{1} and y_{2} and subtracting the resulting equations leaves

$$
\left.\left(y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}\right)\right|_{x=1}+\left(x_{n_{1}}^{2}-x_{n_{2}}^{2}\right) \int_{0}^{1} x y_{1}(x) y_{2}(x) d x=0 .
$$

2) Find the solution of the vibrating membrane problem (i.e., the edges are fixed) in the case where $u(\rho, \varphi, 0)=0$ and $u_{t}(\rho, \varphi, 0)=1,0<\rho<a$.
Solution: $u(\rho, \varphi, t)=\frac{2 a}{c} \sum_{n=1}^{\infty} \frac{J_{0}\left(\rho x_{n} / a\right)}{x_{n}^{2} J_{1}\left(x_{n}\right)} \sin \frac{c t x_{n}}{a}, J_{0}\left(x_{n}\right)=0$.
3) Find the solution of the vibrating membrane problem in the case where $u(\rho, \varphi, 0)=$ 0 and $u_{t}(\rho, \varphi, 0)=a^{2}-\rho^{2}, 0<\rho<a$.
Solution: To consider the initial conditions, we need to compute the Fourier-Bessel series of $a^{2}-\rho^{2}$. To this end, we begin with writing $a^{2}-\rho^{2}=\sum_{n=1}^{\infty} A_{n} J_{0}\left(\rho x_{n} / a\right)$ (The expansion $a^{2}-\rho^{2}=\sum_{n=1}^{\infty} B_{n} J_{0}\left(\rho x_{n}\right)$ is possible but $J_{0}\left(\rho x_{n} / a\right)$ is desired because this Bessel function shows up in the general solution). By defining $x=\rho / a$, we have $1-x^{2}=\sum_{n^{\prime}=1}^{\infty}\left(A_{n^{\prime}} / a^{2}\right) J_{0}\left(x x_{n^{\prime}}\right)$. Thus we obtain $\int_{0}^{1}\left(1-x^{2}\right) J_{0}\left(x x_{n}\right) x d x=$ $\sum_{n^{\prime}=1}^{\infty}\left(A_{n^{\prime}} / a^{2}\right) \int_{0}^{1} J_{0}\left(x x_{n^{\prime}}\right) J_{0}\left(x x_{n}\right) x d x$. For the left-hand side we introduce $t=x x_{n}$, and we have $\left(1 / x_{n}^{4}\right) \int_{0}^{x_{n}}\left(x_{n}^{2}-t^{2}\right) J_{0}(t) t d t$. We note that $t J_{0}(t)=\frac{d}{d t}\left[t J_{1}(t)\right]$ and $J_{0}^{\prime}(t)=-J_{1}(t)$. By integration by parts we obtain $\int_{0}^{x_{n}}\left(x_{n}^{2}-t^{2}\right) J_{0}(t) t d t=4 x_{n} J_{1}\left(x_{n}\right)$. In the end, we obtain $u(\rho, \varphi, t)=\frac{8 a^{3}}{c} \sum_{n=1}^{\infty} \frac{J_{0}\left(\rho x_{n} / a\right)}{x_{n}^{4} J_{1}\left(x_{n}\right)} \sin \frac{c t x_{n}}{a}, J_{0}\left(x_{n}\right)=0$.
4) Find the solution of the heat equation $u_{t}=K \nabla^{2} u$ in the infinite cylinder $0 \leq \rho<\rho_{\max }$ satisfying the boundary condition $u\left(\rho_{\max }, \varphi, t\right)=0$ and the initial condition $u(\rho, \varphi, 0)=\rho_{\text {max }}^{2}-\rho^{2}$.
Solution: $u(\rho, \varphi, t)=8 \rho_{\max }^{2} \sum_{n=1}^{\infty} \frac{J_{0}\left(\rho p_{n} / \rho_{\max }\right)}{x_{n}^{3} J_{1}\left(x_{n}\right)} e^{-x_{n}^{2} K t / \rho_{\text {max }}^{2}}$, where $J_{0}\left(x_{n}\right)=0$.
5) Find the solution of the heat equation $u_{t}=K \nabla^{2} u+\sigma$ in the infinite cylinder $0 \leq \rho<\rho_{\max }$ satisfying the boundary condition $u\left(\rho_{\max }, \varphi, t\right)=T_{1}$ and the initial condition $u(\rho, \varphi, 0)=T_{2}\left(1-\rho^{2} / \rho_{\max }^{2}\right)$. Here K, σ, T_{1}, T_{2} are positive constants.
Solution: $u(\rho, \varphi, t)=T_{1}+\frac{\sigma\left(\rho_{\max }^{2}-\rho^{2}\right)}{4 K}+\sum_{n=1}^{\infty} A_{n} J_{0}\left(\frac{\rho x_{n}}{\rho_{\max }}\right) e^{-x_{n}^{2} K t / \rho_{\max }^{2}}$, where $J_{0}\left(x_{n}\right)=0, A_{n}=\frac{8\left[T_{2}-\sigma \rho_{\text {max }}^{2} / 4 K\right]}{x_{n}^{3} J_{1}\left(x_{n}\right)}-\frac{2 T_{1}}{x_{n} J_{1}\left(x_{n}\right)}$.
