Problem Set 8 (3/12, 3/14, 3/17) Due on Fri, Mar 28

1) Let $\{x_n\}$ be the nonnegative solutions to $J_m(x_n) \cos \beta + x_n J'_m(x_n) \sin \beta = 0$, where $m \ge 0$ and $0 \le \beta \le \pi/2$. Prove

$$\int_0^1 J_m(xx_{n_1}) J_m(xx_{n_2}) x \, dx = 0 \quad n_1 \neq n_2.$$

Solution: If we define $y_i(x) = J_m(xx_{n_i})$, then the Bessel equation becomes $(xy'_i)' + (xx_{n_i}^2 - \frac{m^2}{x})y_i = 0$. We then multiply the equation for y_1 by y_2 and integrate both sides over x. Interchanging the roles of y_1 and y_2 and subtracting the resulting equations leaves

$$(y_1'y_2 - y_1y_2')|_{x=1} + (x_{n_1}^2 - x_{n_2}^2) \int_0^1 xy_1(x)y_2(x)dx = 0.$$

- 2) Find the solution of the vibrating membrane problem (i.e., the edges are fixed) in the case where $u(\rho, \varphi, 0) = 0$ and $u_t(\rho, \varphi, 0) = 1$, $0 < \rho < a$. **Solution:** $u(\rho, \varphi, t) = \frac{2a}{c} \sum_{n=1}^{\infty} \frac{J_0(\rho x_n/a)}{x_n^2 J_1(x_n)} \sin \frac{ctx_n}{a}$, $J_0(x_n) = 0$.
- 3) Find the solution of the vibrating membrane problem in the case where $u(\rho, \varphi, 0) = 0$ and $u_t(\rho, \varphi, 0) = a^2 \rho^2$, $0 < \rho < a$.

Solution: To consider the initial conditions, we need to compute the Fourier-Bessel series of $a^2 - \rho^2$. To this end, we begin with writing $a^2 - \rho^2 = \sum_{n=1}^{\infty} A_n J_0(\rho x_n/a)$ (The expansion $a^2 - \rho^2 = \sum_{n=1}^{\infty} B_n J_0(\rho x_n)$ is possible but $J_0(\rho x_n/a)$ is desired because this Bessel function shows up in the general solution). By defining $x = \rho/a$, we have $1 - x^2 = \sum_{n'=1}^{\infty} (A_{n'}/a^2) J_0(xx_{n'})$. Thus we obtain $\int_0^1 (1 - x^2) J_0(xx_n) x dx = \sum_{n'=1}^{\infty} (A_{n'}/a^2) \int_0^1 J_0(xx_{n'}) J_0(xx_n) x dx$. For the left-hand side we introduce $t = xx_n$, and we have $(1/x_n^4) \int_0^{x_n} (x_n^2 - t^2) J_0(t) t dt$. We note that $tJ_0(t) = \frac{d}{dt} [tJ_1(t)]$ and $J'_0(t) = -J_1(t)$. By integration by parts we obtain $\int_0^{x_n} (x_n^2 - t^2) J_0(t) t dt = 4x_n J_1(x_n)$. In the end, we obtain $u(\rho, \varphi, t) = \frac{8a^3}{c} \sum_{n=1}^{\infty} \frac{J_0(\rho x_n/a)}{x_n^4 J_1(x_n)} \sin \frac{ctx_n}{a}$, $J_0(x_n) = 0$.

- 4) Find the solution of the heat equation $u_t = K\nabla^2 u$ in the infinite cylinder $0 \le \rho < \rho_{\max}$ satisfying the boundary condition $u(\rho_{\max}, \varphi, t) = 0$ and the initial condition $u(\rho, \varphi, 0) = \rho_{\max}^2 \rho^2$. Solution: $u(\rho, \varphi, t) = 8\rho_{\max}^2 \sum_{n=1}^{\infty} \frac{J_0(\rho x_n/\rho_{\max})}{x_n^3 J_1(x_n)} e^{-x_n^2 K t/\rho_{\max}^2}$, where $J_0(x_n) = 0$.
- 5) Find the solution of the heat equation $u_t = K\nabla^2 u + \sigma$ in the infinite cylinder $0 \le \rho < \rho_{\max}$ satisfying the boundary condition $u(\rho_{\max}, \varphi, t) = T_1$ and the initial condition $u(\rho, \varphi, 0) = T_2(1 \rho^2/\rho_{\max}^2)$. Here K, σ, T_1, T_2 are positive constants. Solution: $u(\rho, \varphi, t) = T_1 + \frac{\sigma(\rho_{\max}^2 - \rho^2)}{4K} + \sum_{n=1}^{\infty} A_n J_0\left(\frac{\rho x_n}{\rho_{\max}}\right) e^{-x_n^2 K t/\rho_{\max}^2}$, where $J_0(x_n) = 0, A_n = \frac{8[T_2 - \sigma \rho_{\max}^2/4K]}{x_n^3 J_1(x_n)} - \frac{2T_1}{x_n J_1(x_n)}$.