Problem Set 7 (2/26, 2/28, 3/10)

 Due on Fri, Mar 141) Solve the initial-value problem for the heat equation $u_{t}=K \nabla^{2} u$ in the column $0<x<L_{1}, 0<y<L_{2}$ with the boundary conditions $u(0, y, t)=0, u_{x}\left(L_{1}, y, t\right)=$ $0, u(x, 0, t)=0, u_{y}\left(x, L_{2}, t\right)=0$ and the initial condition $u(x, y, 0)=1$. Find the relaxation time.
Solution: $u(x, y, t)=\frac{4}{\pi^{2}} \sum_{m, n=1}^{\infty} u_{m n}(x, y, t)$, where $u_{m n}(x, y, t)=\frac{\sin \left[\left(m-\frac{1}{2}\right)\left(\pi x / L_{1}\right)\right]}{m-\frac{1}{2}}$ $\frac{\sin \left[\left(n-\frac{1}{2}\right)\left(\pi y / L_{2}\right)\right]}{n-\frac{1}{2}} e^{-\lambda_{m n} K t}$. Here $\lambda_{m n}=\left(m-\frac{1}{2}\right)^{2}\left(\pi / L_{1}\right)^{2}+\left(n-\frac{1}{2}\right)^{2}\left(\pi / L_{2}\right)^{2}$. The relaxation time $\tau=\frac{4}{\pi^{2} K} \frac{L_{1}^{2} L_{2}^{2}}{L_{1}^{2}+L_{2}^{2}}$.
2) Choose one set of m, n and time t for $u_{m n}(x, y, t)$ in the solution of 1$)$. Make 3D plots of $u_{m n}(x, y, t) .^{\dagger}$ Submit one figure.
3) Solve Laplace's equation $\nabla^{2} u=0$ in the column $0<x<L_{1}, 0<y<L_{2}$ with the boundary conditions $u_{x}(0, y)=0, u_{x}\left(L_{1}, y\right)=0, u(x, 0)=T_{1}, u\left(x, L_{2}\right)=T_{2}$, where T_{1} and T_{2} are constants.
Solution: $u(x, y)=y T_{2} / L_{2}+\left(L_{2}-y\right) T_{1} / L_{2}$.
4) Solve the initial-value problem for the vibrating membrane in the square $0<x<L$, $0<y<L$ with $u(x, y, 0)=3 \sin (\pi x / L) \sin (2 \pi y / L)+4 \sin (3 \pi x / L) \sin (5 \pi y / L)$, $u_{t}(x, y, 0)=0$.
Solution: $\quad u(x, y, t)=3 \sin (\pi x / L) \sin (2 \pi y / L) \cos (\pi c t \sqrt{5} / L)+4 \sin (3 \pi x / L)$ $\sin (5 \pi y / L) \cos (\pi c t \sqrt{34} / L)$.
5) Look at the solution $u(x, y, t)$ of 5$)$. Set $t=0$. Make a 3 D plot of $u(x, y, 0)$ and submit it. \dagger Choose $t>0$. Make 3D plots of $u(x, y, t)$. Submit one figure.
6) Consider cylindrical coordinates (ρ, φ, z). Compute (a) $\nabla^{2}\left(\rho^{4} \cos 2 \varphi\right)$, (b) $\nabla^{2}\left(\rho^{2} \cos 2 \varphi\right)$, and (c) $\nabla^{2}\left(\rho^{n}\right), n=1,2, \cdots$. Are these functions smooth in (x, y) ? Solution: (a) $12 \rho^{2} \cos 2 \varphi$; smooth. (b) $0 ;$ smooth. (c) $n^{2} \rho^{n-2}$; smooth if n is even.
7) Find the solution of the equation $\nabla^{2} f(\rho)=0$ satisfying the boundary conditions $f(1)=3, f(2)=5$.
Solution: $f(\rho)=\frac{2}{\ln 2} \ln \rho+3$.
8) Find the solution $u(\rho, \varphi)$ of Laplace's equation in the cylindrical region $1<\rho<2$ satisfying the boundary conditions $u(1, \varphi)=0, u(2, \varphi)=0$ for $-\pi<\varphi<0$ and $u(2, \varphi)=1$ for $0<\varphi<\pi$.
Solution: $u(\rho, \varphi)=\frac{\ln \rho}{2 \ln 2}+\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\rho^{n}-\rho^{-n}}{2^{n}-2^{-n}}\left[\frac{1-(-1)^{n}}{n}\right] \sin n \varphi$.
\dagger You can use any languages C, C++, Matlab, Python, Mathematica, Maple, Fortran, etc. If you have no idea how to make figures, read $\S 2.5 .6$ of the textbook and/or email mmachida@umich.edu.
