Problem Set 7 (2/26, 2/28, 3/10) Due on Fri, Mar 14

1) Solve the initial-value problem for the heat equation $u_t = K\nabla^2 u$ in the column $0 < x < L_1, 0 < y < L_2$ with the boundary conditions $u(0, y, t) = 0, u_x(L_1, y, t) = 0, u(x, 0, t) = 0, u_y(x, L_2, t) = 0$ and the initial condition u(x, y, 0) = 1. Find the relaxation time. Solution: $u(x, y, t) = \frac{4}{\pi^2} \sum_{m,n=1}^{\infty} u_{mn}(x, y, t)$, where $u_{mn}(x, y, t) = \frac{\sin[(m-\frac{1}{2})(\pi x/L_1)]}{m-\frac{1}{2}}$ $\frac{\sin[(n-\frac{1}{2})(\pi y/L_2)]}{n-\frac{1}{2}} e^{-\lambda_{mn}Kt}$. Here $\lambda_{mn} = (m-\frac{1}{2})^2 (\pi/L_1)^2 + (n-\frac{1}{2})^2 (\pi/L_2)^2$. The

 $\frac{\sin[(n-\frac{1}{2})^{(ny/L_2)}]}{n-\frac{1}{2}} e^{-\lambda_{mn}Kt}. \text{ Here } \lambda_{mn} = \left(m-\frac{1}{2}\right)^2 (\pi/L_1)^2 + \left(n-\frac{1}{2}\right)^2 (\pi/L_2)^2. \text{ The relaxation time } \tau = \frac{4}{\pi^2 K} \frac{L_1^2 L_2^2}{L_1^2 + L_2^2}.$

- 2) Choose one set of m, n and time t for $u_{mn}(x, y, t)$ in the solution of 1). Make 3D plots of $u_{mn}(x, y, t)$.[†] Submit one figure.
- 3) Solve Laplace's equation $\nabla^2 u = 0$ in the column $0 < x < L_1$, $0 < y < L_2$ with the boundary conditions $u_x(0, y) = 0$, $u_x(L_1, y) = 0$, $u(x, 0) = T_1$, $u(x, L_2) = T_2$, where T_1 and T_2 are constants. Solution: $u(x, y) = yT_2/L_2 + (L_2 - y)T_1/L_2$.
- 4) Solve the initial-value problem for the vibrating membrane in the square 0 < x < L, 0 < y < L with $u(x, y, 0) = 3\sin(\pi x/L)\sin(2\pi y/L) + 4\sin(3\pi x/L)\sin(5\pi y/L)$, $u_t(x, y, 0) = 0$. Solution: $u(x, y, t) = 3\sin(\pi x/L)\sin(2\pi y/L)\cos(\pi ct\sqrt{5}/L) + 4\sin(3\pi x/L)$

Solution: $u(x, y, t) = 3\sin(\pi x/L) \sin(2\pi y/L) \cos(\pi c t \sqrt{5}/L) + 4\sin(3\pi x/L) \sin(5\pi y/L) \cos(\pi c t \sqrt{34}/L).$

- 5) Look at the solution u(x, y, t) of 5). Set t = 0. Make a 3D plot of u(x, y, 0) and submit it.[†] Choose t > 0. Make 3D plots of u(x, y, t). Submit one figure.
- 6) Consider cylindrical coordinates (ρ, φ, z) . Compute (a) $\nabla^2(\rho^4 \cos 2\varphi)$, (b) $\nabla^2(\rho^2 \cos 2\varphi)$, and (c) $\nabla^2(\rho^n)$, $n = 1, 2, \cdots$. Are these functions smooth in (x, y)? Solution: (a) $12\rho^2 \cos 2\varphi$; smooth. (b) 0; smooth. (c) $n^2\rho^{n-2}$; smooth if n is even.
- 7) Find the solution of the equation ∇²f(ρ) = 0 satisfying the boundary conditions f(1) = 3, f(2) = 5.
 Solution: f(ρ) = ²/_{ln2} ln ρ + 3.
- 8) Find the solution u(ρ, φ) of Laplace's equation in the cylindrical region 1 < ρ < 2 satisfying the boundary conditions u(1, φ) = 0, u(2, φ) = 0 for -π < φ < 0 and u(2, φ) = 1 for 0 < φ < π.
 Solution: u(ρ, φ) = lnρ/2ln2 + 1/π Σ_{n=1}[∞] ρⁿ-ρ⁻ⁿ/2ⁿ-2⁻ⁿ [1-(-1)ⁿ/n] sin nφ.

[†] You can use any languages C, C++, Matlab, Python, Mathematica, Maple, Fortran, etc. If you have no idea how to make figures, read §2.5.6 of the textbook and/or email mmachida@umich.edu.

Math 454