Problem Set 6 (2/19, 2/21, 2/24)
Due on Fri, Feb 28

1) Find the relaxation time for Problem 5 in the Homework Problem Set 5 .

Solution: We know $u(z, t)=T_{1}+\Phi_{2} z+\sum_{n=1}^{\infty} A_{n} \sin \frac{(n-1 / 2) \pi z}{L} e^{-\left[\frac{[n-1 / 2) \pi}{L}\right]^{2} K t}$, where $A_{n}=\frac{2\left(T_{3}-T_{1}\right)}{(n-1 / 2) \pi}-\frac{2 L \Phi_{2}(-1)^{n+1}}{(n-1 / 2)^{2} \pi^{2}}$. Hence $\tau=\frac{4 L^{2}}{\pi^{2} K}$.
2) Let us consider heat flow in a circular ring of circumference L.
(a) Find all of the separated solutions of the heat equation $u_{t}=K u_{z z}(K>0)$ satisfying the periodic boundary conditions $u(0, t)=u(L, t), u_{z}(0, t)=$ $u_{z}(L, t)$.
(b) Solve the heat equation $u_{t}=K u_{z z}(K>0)$ satisfying the periodic boundary conditions $u(0, t)=u(L, t), u_{z}(0, t)=u_{z}(L, t)$, and the initial conditions $u(z, 0)=100$ if $0<z<L / 2$ and $u(z, 0)=0$ if $L / 2<z<L$.
Solution: (a) $u_{n}(z, t)=\left(A_{n} \cos \frac{2 n \pi z}{L}+B_{n} \sin \frac{2 n \pi z}{L}\right) \exp \left[-\left(\frac{2 n \pi}{L}\right)^{2} K t\right], n=$ $0,1,2, \ldots$ (b) $u(z, t)=50+\frac{100}{\pi} \sum_{n=1}^{\infty}\left[\frac{1-(-1)^{n}}{n}\right] \sin \frac{2 n \pi z}{L} \exp \left[-\left(\frac{2 n \pi}{L}\right)^{2} K t\right]$.
3) Find the solution of the nonhomogeneous heat equation

$$
u_{t}=K u_{z z}+v e^{-a t} \sin \frac{\pi z}{L}, \quad 0<z<L, t>0
$$

with $u(0, t)=u(L, t)=u(z, 0)=0$. Here a, v, K are positive constants.
Solution: If $a \neq \pi^{2} K / L^{2}$, then $u(z, t)=-v \sin (\pi z / L) \frac{e^{-a t}-e^{-\pi^{2} K t / L^{2}}}{a-\left(\pi^{2} K / L^{2}\right)}$. If $a=$ $\pi^{2} K / L^{2}$, then $u(z, t)=v \sin (\pi z / L) t e^{-\pi^{2} K t / L^{2}}$.
4) The energy of a vibrating string of tension T_{0} and density $\rho=m / L$ is defined by

$$
E=\frac{1}{2} \int_{0}^{L}\left(\rho y_{t}^{2}+T_{0} y_{s}^{2}\right) d s
$$

Let

$$
y(s, t)=\sum_{n=1}^{\infty}\left(\tilde{A}_{n} \cos \omega_{n} t+\tilde{B}_{n} \sin \omega_{n} t\right) \sin \frac{n \pi s}{L}
$$

be a solution of the wave equation with $\omega_{n}=n \pi c / L$, where $c^{2}=T_{0} / \rho$. Show that E is independent of t (conservation of energy) by using Parseval's theorem to write E as an infinite series involving $\tilde{A}_{n}, \tilde{B}_{n}$.
Solution: $E=\frac{L}{4} \sum_{n=1}^{\infty}\left[\rho \omega_{n}^{2} \tilde{B}_{n}^{2}+T_{0}\left(\frac{n \pi}{L}\right)^{2} \tilde{A}_{n}^{2}\right]$.
5) Consider the following initial-value problem for the wave equation $y_{t t}=c^{2} y_{s s}$ for $t>0,0<s<L$ with $y(0, t)=y(L, t)=0$ for $t>0$ and $y(s, 0)=0, y_{t}(s, 0)=1$ for $0<s<L$. Find the Fourier representation of the solution.
Solution: $y(s, t)=\frac{2 L}{\pi^{2} c} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n^{2}} \sin \frac{n \pi s}{L} \sin \frac{n \pi c t}{L}$.

