Problem Set 3 (1/24, 1/27)

Due on Fri, Jan 31

1) Find the mean square error for the Fourier series of the function $f(x)=1$ for $0<x<\pi, f(0)=0$, and $f(x)=-1$ for $-\pi<x<0$. Then, show that $\sigma_{N}^{2}=O\left(N^{-1}\right)$ as $N \rightarrow \infty$.
Solution: $\sigma_{N}^{2}=\frac{2}{\pi^{2}} \sum_{n=N+1}^{\infty} \frac{\left[(-1)^{n}-1\right]^{2}}{n^{2}}$. To show $O\left(N^{-1}\right)$, define $n=2 m-1$ and replace the summation with $\sum_{m=(N+2) / 2}^{\infty}$ or $\sum_{m=(N+3) / 2}^{\infty}$ depending on if N is even or odd. Then use integrals to estimate the sum.
2) Find the mean square error for the Fourier series of $f(x)=x^{2},-\pi \leq x \leq \pi$. Then, show that $\sigma_{N}^{2}=O\left(N^{-3}\right)$ as $N \rightarrow \infty$.
Solution: $\sigma_{N}^{2}=8 \sum_{n=N+1}^{\infty} \frac{1}{n^{4}}$.
3) Write out Parseval's theorem for the Fourier series of
(a) $f(x)=1$ for $0<x<\pi, f(0)=0$, and $f(x)=-1$ for $-\pi<x<0$,
(b) $f(x)=x^{2},-\pi \leq x \leq \pi$.

Solution: (a) $\pi^{2} / 8=1+\frac{1}{9}+\frac{1}{25}+\cdots$, and (b) $\pi^{4} / 90=1+\frac{1}{16}+\frac{1}{81}+\cdots$.
4) Verify that the orthogonality relations hold, in the form

$$
\int_{-L}^{L} e^{i n \pi x / L} e^{-i m \pi x / L} d x=2 L \delta_{n m}
$$

Solution: Consider two cases: $n \neq m$ and $n=m$.
5) Use the complex form to find the Fourier series of $f(x)=e^{x},-L<x<L$.

Solution: $e^{x}=\sum_{n=-\infty}^{\infty}(-1)^{n} \frac{L+i n \pi}{L^{2}+n^{2} \pi^{2}}(\sinh L) \exp \left(\frac{i n \pi}{L} x\right)$.
6) Let $0<r<1, f(x)=1 /\left(1-r e^{i x}\right),-\pi<x<\pi$. Find the Fourier series of f

Solution: Expand f as a power series in r. Recall $(1-x)\left(1+x+x^{2}+\ldots\right)=1$. We obtain $f(x)=\sum_{n=0}^{\infty} r^{n} e^{i n x}$.
7) Let $0 \leq r<1$. Use the above problem 6) to derive

$$
\begin{aligned}
& \frac{1-r \cos x}{1+r^{2}-2 r \cos x}=1+\sum_{n=1}^{\infty} r^{n} \cos n x \\
& \frac{r \sin x}{1+r^{2}-2 r \cos x}=\sum_{n=1}^{\infty} r^{n} \sin n x .
\end{aligned}
$$

Solution: Use Euler's formula and consider the real part and imaginary part. Note that $0 \leq r<1$ in this problem but we had $0<r<1$ in 6).

