More Solutions for Final

To prepare for the exam, read your notes (and lecture notes on the web site) in addition to the textbook. Go over homework problems and quizzes. I wrote a few more solutions to homework problem sets.

Below are some additional problems from the textbook.

- Exercise 2.2.2
- Exercise 2.2.3
- Exercise 3.1.13
- Exercise 3.1.14
- Exercise 3.3.8
- Exercise 3.3.9
- Exercise 4.2.13
- Exercise 4.2.14
- Exercise 5.1.15
- Exercise 5.1.16
- Exercise 5.2.6.6
- Exercise 8.1.1
- Exercise 8.4.1

Homework Set 7, Problem 8 Find the solution $u(\rho, \varphi)$ of Laplace's equation in the cylindrical region $1<\rho<2$ satisfying the boundary conditions $u(1, \varphi)=0, u(2, \varphi)=0$ for $-\pi<\varphi<0$ and $u(2, \varphi)=1$ for $0<\varphi<\pi$.

Solution We solve

$$
\nabla^{2} u=u_{\rho \rho}+\frac{1}{\rho} u_{\rho}+\frac{1}{\rho^{2}} u_{\varphi \varphi}=0 .
$$

Assuming a solution of the form $u(\rho, \varphi)=R(\rho) \Phi(\varphi)$, we obtain

$$
\frac{R^{\prime \prime}}{R}+\frac{1}{\rho} \frac{R^{\prime}}{R}+\frac{1}{\rho^{2}} \frac{\Phi^{\prime \prime}}{\Phi}=0
$$

By using the separation constant $\lambda=-\Phi^{\prime \prime} / \Phi$, we have

$$
\begin{aligned}
& \Phi^{\prime \prime}+\lambda \Phi=0, \quad \Phi(-\pi)=\Phi(\pi), \quad \Phi^{\prime}(-\pi)=\Phi^{\prime}(\pi), \\
& R^{\prime \prime}+\frac{1}{\rho} R^{\prime}-\frac{\lambda}{\rho^{2}} R=0 .
\end{aligned}
$$

We obtain Φ as

$$
\Phi(\varphi)=A_{m} \cos m \varphi+B_{m} \sin m \varphi, \quad \lambda=m^{2}, \quad m=0,1,2, \ldots
$$

When $m=0$, two linearly independent solutions to $R^{\prime \prime}+(1 / \rho) R^{\prime}=0$ are $1, \ln \rho$. For $m \neq 0$, two solutions are found as $R(\rho)=\rho^{m}, \rho^{-m}$. Therefore the general solution is obtained as
$u(\rho, \varphi)=A_{0}+B_{0} \ln \rho+\sum_{m=1}^{\infty} \rho^{m}\left(A_{m} \cos m \varphi+B_{m} \sin m \varphi\right)+\sum_{m=1}^{\infty} \rho^{-m}\left(C_{m} \cos m \varphi+D_{m} \sin m \varphi\right)$, where $A_{0}, B_{0}, A_{m}, B_{m}, C_{m}, D_{m}$ are constants.

The boundary condition $u(1, \varphi)=0$ is expressed as

$$
A_{0}+\sum_{m^{\prime}=1}^{\infty}\left(A_{m^{\prime}} \cos m^{\prime} \varphi+B_{m^{\prime}} \sin m^{\prime} \varphi\right)+\sum_{m^{\prime}=1}^{\infty}\left(C_{m^{\prime}} \cos m^{\prime} \varphi+D_{m^{\prime}} \sin m^{\prime} \varphi\right)=0
$$

By operating $\int_{-\pi}^{\pi} d \varphi \cos m \varphi$ and $\int_{-\pi}^{\pi} d \varphi \sin m \varphi$, and using orthogonality relations, we obtain

$$
A_{0}=0, \quad C_{m}=-A_{m}, \quad D_{m}=-B_{m}
$$

That is,

$$
u(\rho, \varphi)=B_{0} \ln \rho+\sum_{m=1}^{\infty}\left(\rho^{m}-\rho^{-m}\right)\left(A_{m} \cos m \varphi+B_{m} \sin m \varphi\right)
$$

The boundary condition for $u(2, \varphi)$ is expressed as

$$
\theta(\varphi)=B_{0} \ln 2+\sum_{m^{\prime}=1}^{\infty}\left(2^{m^{\prime}}-2^{-m^{\prime}}\right)\left(A_{m^{\prime}} \cos m^{\prime} \varphi+B_{m^{\prime}} \sin m^{\prime} \varphi\right)
$$

where $\theta(\varphi)=0$ for $\varphi<0$ and $=1$ for $\varphi>0$. By operating $\int_{-\pi}^{\pi} d \varphi \cos m \varphi$ and using orthogonality relations, we obtain for $m=0,1,2, \ldots$,

$$
\begin{aligned}
\int_{0}^{\pi} \cos m \varphi d \varphi & =\int_{-\pi}^{\pi} B_{0} \ln 2 \cos m \varphi d \varphi+\sum_{m^{\prime}=1}^{\infty}\left(2^{m^{\prime}}-2^{-m^{\prime}}\right) \int_{-\pi}^{\pi}\left(A_{m^{\prime}} \cos m^{\prime} \varphi+B_{m^{\prime}} \sin m^{\prime} \varphi\right) \cos m \varphi d \varphi \\
& =2 \pi \delta_{m 0} B_{0} \ln 2+\pi\left(1-\delta_{m 0}\right)\left(2^{m}-2^{-m}\right) A_{m}
\end{aligned}
$$

Since the left-hand side is $\pi \delta_{m 0}$, we obtain

$$
B_{0}=\frac{1}{2 \ln 2}, \quad A_{m}=0
$$

Similarly by operating $\int_{-\pi}^{\pi} d \varphi \sin m \varphi$ and using orthogonality relations, we obtain for $m=1,2, \ldots$,

$$
\begin{aligned}
\int_{0}^{\pi} \sin m \varphi d \varphi & =\int_{-\pi}^{\pi} B_{0} \ln 2 \sin m \varphi d \varphi+\sum_{m^{\prime}=1}^{\infty}\left(2^{m^{\prime}}-2^{-m^{\prime}}\right) \int_{-\pi}^{\pi}\left(A_{m^{\prime}} \cos m^{\prime} \varphi+B_{m^{\prime}} \sin m^{\prime} \varphi\right) \sin m \varphi d \varphi \\
& =\pi\left(2^{m}-2^{-m}\right) B_{m}
\end{aligned}
$$

Since the left-hand side is $\left[1-(-1)^{m}\right] / m$, we obtain

$$
B_{m}=\frac{1-(-1)^{m}}{\pi m\left(2^{m}-2^{-m}\right)}
$$

Finally we obtain

$$
u(\rho, \varphi)=\frac{\ln \rho}{2 \ln 2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\rho^{m}-\rho^{-m}}{2^{m}-2^{-m}}\left[\frac{1-(-1)^{m}}{m}\right] \sin m \varphi .
$$

Homework Set 8, Problem 3 Find the solution of the vibrating membrane problem in the case where $u(\rho, \varphi, 0)=0$ and $u_{t}(\rho, \varphi, 0)=a^{2}-\rho^{2}, 0<\rho<a$.

Solution We will solve

$$
\begin{cases}u_{t t}=c^{2} \Delta u, & t>0, \quad 0<\rho<a \\ u=0, & t>0, \quad \rho=a \\ u=0, & t=0, \quad 0<\rho<a \\ u_{t}=a^{2}-\rho^{2}, & t=0, \quad 0<\rho<a\end{cases}
$$

where $\Delta=\partial_{\rho \rho}+(1 / \rho) \partial_{\rho}+\left(1 / \rho^{2}\right) \partial_{\varphi \varphi}$.
Let us write u as $u(\rho, \varphi, t)=R(\rho) \Phi(\varphi) T(t)$. We obtain

$$
\frac{T^{\prime \prime}}{T}=c^{2}\left[\frac{R^{\prime \prime}}{R}+\frac{1}{\rho} \frac{R^{\prime}}{R}+\frac{1}{\rho^{2}} \frac{\Phi^{\prime \prime}}{\Phi}\right] .
$$

We introduce separation constants as $\mu=-\Phi^{\prime \prime} / \Phi, \lambda=\left(-1 / c^{2}\right) T^{\prime \prime} / T$. We obtain

$$
\begin{aligned}
& \Phi^{\prime \prime}+\mu \Phi=0, \quad \Phi(-\pi)=\Phi(\pi), \quad \Phi^{\prime}(-\pi)=\Phi^{\prime}(\pi), \\
& T^{\prime \prime}+\lambda c^{2} T=0, \quad T(0)=0 . \\
& R^{\prime \prime}+\frac{1}{\rho} R+\left(\lambda-\frac{\mu}{\rho^{2}}\right) R=0, \quad R(a)=0 .
\end{aligned}
$$

We obtain

$$
\begin{aligned}
& \Phi(\varphi)=A \cos m \varphi+B \sin m \varphi, \quad \mu=m^{2}, \quad m=0,1,2, \ldots, \\
& T(t)=\sin (c t \sqrt{\lambda})
\end{aligned}
$$

where A, B are constants. Moreover we have

$$
R(\rho)=J_{m}(\rho \sqrt{\lambda}), \quad \sqrt{\lambda}=\frac{x_{n}^{(m)}}{a}, \quad J_{m}\left(x_{n}^{(m)}\right)=0, \quad x_{n}^{(m)}>0, \quad n=1,2, \ldots
$$

The general solution is obtained as

$$
u(\rho, \varphi, t)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\frac{\rho x_{n}^{(m)}}{a}\right)\left(A_{m n} \cos m \varphi+B_{m n} \sin m \varphi\right) \sin \frac{c t x_{n}^{(m)}}{a} .
$$

Let us write $x=\rho / a$. The initial condition for u_{t} is then written as

$$
a^{2}\left(1-x^{2}\right)=\sum_{m^{\prime}=0}^{\infty} \sum_{n^{\prime}=1}^{\infty} \frac{c x_{n^{\prime}}^{\left(m^{\prime}\right)}}{a} J_{m^{\prime}}\left(x x_{n^{\prime}}^{\left(m^{\prime}\right)}\right)\left(A_{m^{\prime} n^{\prime}} \cos m^{\prime} \varphi+B_{m^{\prime} n^{\prime}} \sin m^{\prime} \varphi\right)
$$

Note that for $m, m^{\prime}=1,2, \cdots$, we have
$\int_{-\pi}^{\pi} \cos \left(m^{\prime} \varphi\right) \cos (m \varphi) d \varphi=\int_{-\pi}^{\pi} \sin \left(m^{\prime} \varphi\right) \sin (m \varphi) d \varphi=\pi \delta_{m^{\prime} m}, \quad \int_{-\pi}^{\pi} \sin \left(m^{\prime} \varphi\right) \cos (m \varphi) d \varphi=0$.

We multiply $\cos m \varphi$ and integrate over φ :
$\int_{-\pi}^{\pi} a^{2}\left(1-x^{2}\right) \cos m \varphi d \varphi=\int_{-\pi}^{\pi} \sum_{m^{\prime}=0}^{\infty} \sum_{n^{\prime}=1}^{\infty} \frac{c x_{n^{\prime}}^{\left(m^{\prime}\right)}}{a} J_{m^{\prime}}\left(x x_{n^{\prime}}^{\left(m^{\prime}\right)}\right)\left(A_{m^{\prime} n^{\prime}} \cos m^{\prime} \varphi+B_{m^{\prime} n^{\prime}} \sin m^{\prime} \varphi\right) \cos m \varphi d \varphi$.
Using the orthogonality relations we find
$2 \pi a^{2}\left(1-x^{2}\right) \delta_{m 0}=2 \pi \delta_{m 0} \sum_{n^{\prime}=1}^{\infty} \frac{c x_{n^{\prime}}^{(0)}}{a} J_{0}\left(x x_{n^{\prime}}^{(0)}\right) A_{0 n^{\prime}}+\pi\left(1-\delta_{m 0}\right) \sum_{n^{\prime}=1}^{\infty} \frac{c x_{n^{\prime}}^{(m)}}{a} J_{m}\left(x x_{n^{\prime}}^{(m)}\right) A_{m n^{\prime}}$.
We then multiply $J_{m}\left(x x_{n}^{(m)}\right) x$ and integrate over x :

$$
\begin{gathered}
2 \pi a^{2} \delta_{m 0} \int_{0}^{1}\left(1-x^{2}\right) J_{m}\left(x x_{n}^{(m)}\right) x d x=2 \pi \delta_{m 0} \int_{0}^{1} \sum_{n^{\prime}=1}^{\infty} \frac{c x_{n^{\prime}}^{(0)}}{a} A_{0 n^{\prime}} J_{0}\left(x x_{n^{\prime}}^{(0)}\right) J_{m}\left(x x_{n}^{(m)}\right) x d x \\
+ \\
+\pi\left(1-\delta_{m 0}\right) \int_{0}^{1} \sum_{n^{\prime}=1}^{\infty} \frac{c x_{n^{\prime}}^{(m)}}{a} A_{m n^{\prime}} J_{m}\left(x x_{n^{\prime}}^{(m)}\right) J_{m}\left(x x_{n}^{(m)}\right) x d x
\end{gathered}
$$

We note that

$$
\int_{0}^{1} J_{m}\left(x x_{n^{\prime}}^{(m)}\right) J_{m}\left(x x_{n}^{(m)}\right) x d x=\frac{1}{2} J_{m+1}\left(x_{n}^{(m)}\right)^{2} \delta_{n n^{\prime}}
$$

Hence we obtain
$2 \pi a^{2} \delta_{m 0} \int_{0}^{1}\left(1-x^{2}\right) J_{m}\left(x x_{n}^{(m)}\right) x d x$

$$
=2 \pi \delta_{m 0} \frac{c x_{n}^{(0)}}{a} A_{0 n} \frac{J_{1}\left(x_{n}^{(0)}\right)^{2}}{2}+\pi\left(1-\delta_{m 0}\right) \frac{c x_{n}^{(m)}}{a} A_{m n} \frac{J_{m+1}\left(x_{n}^{(m)}\right)^{2}}{2} .
$$

We see that $A_{m n}=0$ if $m \neq 0$. When $m=0$ we have

$$
\int_{0}^{1}\left(1-x^{2}\right) J_{0}\left(x x_{n}\right) x d x=\frac{c x_{n}}{a^{3}} A_{0 n} \frac{J_{1}\left(x_{n}\right)^{2}}{2}
$$

where $x_{n}=x_{n}^{(0)}$. The left-hand side is calculated as follows.

$$
\begin{aligned}
\int_{0}^{1}\left(1-x^{2}\right) J_{0} & \left(x x_{n}\right) x d x=\frac{1}{x_{n}^{4}} \int_{0}^{x_{n}}\left(x_{n}^{2}-t^{2}\right) J_{0}(t) t d t \quad\left[t=x x_{n}\right] \\
& =\frac{1}{x_{n}^{4}}\left\{\left.x_{n}^{2} t J_{1}\right|_{0} ^{x_{n}}-\left[\left.t^{2}\left(t J_{1}\right)\right|_{0} ^{x_{n}}-2 \int_{0}^{x_{n}} t^{2} J_{1}(t) d t\right]\right\} \quad\left[t J_{0}=\left(t J_{1}\right)^{\prime}\right] \\
& =\frac{-2}{x_{n}^{4}} \int_{0}^{x_{n}} t^{2}\left(-J_{1}(t)\right) d t \\
& =\frac{-2}{x_{n}^{4}}\left[\left.t^{2} J_{0}\right|_{0} ^{x_{n}}-2 \int_{0}^{x_{n}} J_{0} t d t\right] \quad\left[J_{0}^{\prime}=-J_{1}\right] \\
& =\frac{4}{x_{n}^{4}} \int_{0}^{x_{n}} J_{0}(t) t d t \\
& =\left.\frac{4}{x_{n}^{4}} t J_{1}(t)\right|_{0} ^{x_{n}} \quad\left[t J_{0}=\left(t J_{1}\right)^{\prime}\right] \\
& =\frac{4}{x_{n}^{3}} J_{1}\left(x_{n}\right)
\end{aligned}
$$

Therefore we obtain

$$
A_{0 n}=\frac{8 a^{3}}{c x_{n}^{4} J_{1}\left(x_{n}\right)} .
$$

Similarly by multiplying $\sin m \varphi$ and integrating over φ, we find $B_{m n}=0$ for all m, n. Finally we obtain

$$
u(\rho, \varphi, t)=\frac{8 a^{3}}{c} \sum_{n=1}^{\infty} \frac{J_{0}\left(\rho x_{n}^{(0)} / a\right)}{\left[x_{n}^{(0)}\right]^{4} J_{1}\left(x_{n}^{(0)}\right)} \sin \frac{c t x_{n}^{(0)}}{a}
$$

Alternative Solution Since it is clear from the equation that u does not depend on φ, we can solve the problem as follows. However the above method works even if initial conditions depend on φ.

Let us write u as $u(\rho, \varphi, t)=u(\rho, t)=R(\rho) T(t)$. We obtain

$$
\frac{T^{\prime \prime}}{T}=c^{2}\left[\frac{R^{\prime \prime}}{R}+\frac{1}{\rho} \frac{R^{\prime}}{R}\right]
$$

We introduce a separation constant as $\lambda=\left(-1 / c^{2}\right) T^{\prime \prime} / T$. We obtain

$$
T^{\prime \prime}+\lambda c^{2} T=0, \quad T(0)=0 \quad \Rightarrow \quad T(t)=\sin (c t \sqrt{\lambda})
$$

Moreover we have

$$
\begin{aligned}
& R^{\prime \prime}+\frac{1}{\rho} R+\lambda R=0, \quad R(a)=0 \\
& \Rightarrow \quad R(\rho)=J_{0}(\rho \sqrt{\lambda}), \quad \sqrt{\lambda}=\frac{x_{n}}{a}, \quad J_{0}\left(x_{n}\right)=0, \quad x_{n}>0, \quad n=1,2, \ldots
\end{aligned}
$$

The general solution is obtained as

$$
u(\rho, t)=\sum_{n=1}^{\infty} A_{n} J_{0}\left(\frac{\rho x_{n}}{a}\right) \sin \frac{c t x_{n}}{a}
$$

where A_{n} are constants. Let us write $x=\rho / a$. The initial condition for u_{t} is then written as

$$
a^{2}\left(1-x^{2}\right)=\sum_{n^{\prime}=1}^{\infty} A_{n^{\prime}} \frac{c x_{n^{\prime}}}{a} J_{0}\left(x x_{n^{\prime}}\right)
$$

We multiply $J_{0}\left(x x_{n}\right) x$ and integrate over x :

$$
a^{2} \int_{0}^{1}\left(1-x^{2}\right) J_{0}\left(x x_{n}\right) x d x=\int_{0}^{1} \sum_{n^{\prime}=1}^{\infty} A_{n^{\prime}} \frac{c x_{n^{\prime}}}{a} J_{0}\left(x x_{n^{\prime}}\right) J_{0}\left(x x_{n}\right) x d x
$$

Thus we arrive at

$$
\int_{0}^{1}\left(1-x^{2}\right) J_{0}\left(x x_{n}\right) x d x=A_{n} \frac{c x_{n}}{a^{3}} \frac{J_{1}\left(x_{n}\right)^{2}}{2}
$$

Homework Set 9, Problem 2 Solve $\nabla^{2}[f(r)]=-1$ with the boundary condition $f(a)=0$ and $f(0)$ finite.

Solution We note that

$$
\nabla^{2} f=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} f_{r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta f_{\theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} f_{\varphi \varphi}
$$

Therefore,

$$
\nabla^{2}[f(r)]=-1 \quad \Leftrightarrow \quad \frac{1}{r^{2}}\left(r^{2} f^{\prime}\right)^{\prime}=-1 \quad \Leftrightarrow \quad f^{\prime \prime}+\frac{2}{r} f^{\prime}=-1
$$

We find a solution $f_{c}(r)$ (a complementary function) to the homogeneous equation,

$$
f_{c}^{\prime \prime}+\frac{2}{r} f_{c}^{\prime}=0
$$

By assuming the form $f_{c}=r^{k}$, we obtain $k(k+1)=0$ or $k=0,-1$. Hence we have

$$
f_{c}(r)=A+\frac{B}{r}
$$

where A, B are constants. Furthermore using the method of undetermined coefficients we assume a particular solution of the form $f_{p}(r)=C r^{2}$. By substituting this f_{p} for f in $f^{\prime \prime}+\frac{2}{r} f^{\prime}=-1$, we find

$$
C=-\frac{1}{6} .
$$

Thus a general solution is written as

$$
f(r)=f_{c}(r)+f_{p}(r)=A+\frac{B}{r}-\frac{r^{2}}{6} .
$$

Since $f(0)$ is finite, we can set $B=0$. To satisfy $f(a)=0$, we must choose $A=a^{2} / 6$. Therefore we obtain

$$
f(r)=\frac{a^{2}-r^{2}}{6} .
$$

Homework Set 10, Problem 4 Find the Fourier transform of $f(x)=1 /\left[1+(x-3)^{2}\right]$.

Solution First we calculate $g(x)=\int_{-\infty}^{\infty} e^{-|\mu|} e^{i \mu x} d \mu$.

$$
\begin{gathered}
g(x)=\int_{-\infty}^{\infty} e^{-|\mu|} e^{i \mu x} d \mu=\int_{0}^{\infty} e^{-\mu} e^{i \mu x} d \mu+\int_{-\infty}^{0} e^{\mu} e^{i \mu x} d \mu=\int_{0}^{\infty} e^{-(1-i x) \mu} d \mu+\int_{0}^{\infty} e^{-(1+i x) \mu} d \mu \\
=\frac{1}{1-i x}+\frac{1}{1+i x}=\frac{2}{1+x^{2}}
\end{gathered}
$$

The result implies

$$
e^{-|\mu|}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(x) e^{-i \mu x} d x
$$

Noting the inverse Fourier transform $\tilde{f}(\mu)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i \mu x} d x$, we obtain

$$
\begin{aligned}
\tilde{f}(\mu)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} & \frac{1}{1+(x-3)^{2}} e^{-i \mu x} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{1+x^{\prime 2}} e^{-i \mu\left(x^{\prime}+3\right)} d x^{\prime} \\
& =\frac{e^{-3 i \mu}}{2} \frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{2}{1+x^{2}} e^{-i \mu x} d x=\frac{e^{-3 i \mu}}{2} \frac{1}{2 \pi} \int_{-\infty}^{\infty} g(x) e^{-i \mu x} d x \\
& =\frac{1}{2} e^{-3 i \mu} e^{-|\mu|} .
\end{aligned}
$$

Alternative Solution We can also find $\tilde{f}(\mu)$ directly.

$$
\begin{aligned}
\tilde{f}(\mu) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{1+(x-3)^{2}} e^{-i \mu x} d x=\frac{1}{2 \pi} e^{-3 i \mu} \int_{-\infty}^{\infty} \frac{1}{1+x^{2}} e^{-i \mu x} d x \\
& =\frac{1}{4 \pi} e^{-3 i \mu}\left[\int_{-\infty}^{\infty} \frac{e^{-i \mu x}}{1-i x} d x+\int_{-\infty}^{\infty} \frac{e^{-i \mu x}}{1+i x} d x\right] \\
& =\frac{1}{4 \pi} e^{-3 i \mu}\left[e^{-\mu} \int_{-\infty}^{\infty} \frac{e^{(1-i x) \mu}}{1-i x} d x+e^{\mu} \int_{-\infty}^{\infty} \frac{e^{-(1+i x) \mu}}{1+i x} d x\right] \\
& =\frac{1}{4 \pi} e^{-3 i \mu}\left[e^{-\mu} \int_{-\infty}^{\infty} \int_{-\infty}^{\mu} e^{(1-i x) t} d t d x+e^{\mu} \int_{-\infty}^{\infty} \int_{\mu}^{\infty} e^{-(1+i x) t} d t d x\right] \\
& =\frac{1}{2} e^{-3 i \mu}\left[e^{-\mu} \int_{-\infty}^{\mu} e^{t} \int_{-\infty}^{\infty} \frac{e^{-i x t}}{2 \pi} d x d t+e^{\mu} \int_{\mu}^{\infty} e^{-t} \int_{-\infty}^{\infty} \frac{e^{-i x t}}{2 \pi} d x d t\right] \\
& =\frac{1}{2} e^{-3 i \mu}\left[e^{-\mu} \int_{-\infty}^{\mu} e^{t} \delta(t) d t+e^{\mu} \int_{\mu}^{\infty} e^{-t} \delta(t) d t\right] \\
& =\frac{1}{2} e^{-3 i \mu} e^{-|\mu|} .
\end{aligned}
$$

Homework Set 11, Problem 4 Find the solution of the heat equation $u_{t}-K u_{x x}=h$ for $0<x<\infty$ satisfying the boundary conditions $u_{x}(0, t)=0, u(x, 0)=0$.

Solution Let us start by recalling that $u_{t}-K u_{x x}=h,-\infty<x<\infty$ with the initial condition $u(x, 0)=0$ is solved as

$$
u(x, t)=\int_{0}^{t} \int_{-\infty}^{\infty} G\left(x, x^{\prime}, t-s\right) h\left(x^{\prime}, s\right) d x^{\prime} d s
$$

where $G\left(x, x^{\prime}, t\right)=\frac{1}{\sqrt{4 \pi K t}} e^{-\left(x-x^{\prime}\right)^{2} / 4 K t}$ is the heat kernel.
We extend h as

$$
h_{E}(x, t)= \begin{cases}h(x, t) & x>0 \\ h(-x, t) & x<0\end{cases}
$$

Then we have

$$
u(x, t)=\int_{0}^{t} \int_{-\infty}^{\infty} G\left(x, x^{\prime}, t-s\right) h_{E}\left(x^{\prime}, s\right) d x^{\prime} d s
$$

We obtain

$$
\begin{aligned}
u(x, t) & =\int_{0}^{t} \int_{0}^{\infty} G\left(x, x^{\prime}, t-s\right) h\left(x^{\prime}, s\right) d x^{\prime} d s+\int_{0}^{t} \int_{-\infty}^{0} G\left(x, x^{\prime}, t-s\right) h\left(-x^{\prime}, s\right) d x^{\prime} d s \\
& =\int_{0}^{t} \int_{0}^{\infty} G\left(x, x^{\prime}, t-s\right) h\left(x^{\prime}, s\right) d x^{\prime} d s+\int_{0}^{t} \int_{0}^{\infty} G\left(x,-x^{\prime}, t-s\right) h\left(x^{\prime}, s\right) d x^{\prime} d s \\
& =\int_{0}^{t} \int_{0}^{\infty}\left[G\left(x, x^{\prime}, t-s\right)+G\left(x,-x^{\prime}, t-s\right)\right] h\left(x^{\prime}, s\right) d x^{\prime} d s
\end{aligned}
$$

Therefore,

$$
u(x, t)=\int_{0}^{t} \int_{0}^{\infty} \frac{1}{\sqrt{4 \pi K(t-s)}}\left[e^{-\left(x-x^{\prime}\right)^{2} / 4 K(t-s)}+e^{-\left(x+x^{\prime}\right)^{2} / 4 K(t-s)}\right] h\left(x^{\prime}, s\right) d x^{\prime} d s
$$

