More Solutions for Midterm 1

To prepare for the exam, read your notes (and lecture notes on the web site) in addition to the textbook. Go over homework problems and quizzes. I wrote a few more solutions to homework problem sets.

Homework Set 1, Problem 7 Find the separated solutions $u(x, t)$ of the heat equation $u_{t}-u_{x x}=0$ in the region $0<x<L, t>0$, that satisfy the boundary conditions $u(0, t)=0$, $u(L, t)=0$.

Solution We look for a separated solution $u(x, t)=X(x) T(t)$. We get

$$
\frac{T^{\prime}}{T}-\frac{X^{\prime \prime}}{X}=0
$$

By introducing the separation constant λ, we obtain \ddagger

$$
T^{\prime}(t)=\lambda T(t), \quad X^{\prime \prime}(x)=\lambda X(x)
$$

Thus, for three cases $\lambda>0, \lambda=0$, and $\lambda<0$, we have \S

$$
u(x, t)= \begin{cases}\left(A_{1} \cosh (k x)+A_{2} \sinh (k x)\right) e^{k^{2} t} & \text { for } \lambda=k^{2}, k>0 \\ A_{1} x+A_{2} & \text { for } \lambda=0 \\ \left(A_{1} \cos (l x)+A_{2} \sin (l x)\right) e^{-l^{2} t} & \text { for } \lambda=-l^{2}, l>0\end{cases}
$$

For $\lambda>0$, the boundary conditions imply $A_{1}=A_{2}=0$. Similarly for $\lambda=0$, we can conclude $A_{1}=A_{2}=0$. Only the case $\lambda<0$ has nontrivial solutions. From the boundary conditions, we have $A_{1}=0$ and $\sin (l L)=0$. Hence $l L=n \pi(n=0, \pm 1, \pm 2, \ldots)$. Let C be a constant. We obtain

$$
u(x, t)=C \sin \frac{n \pi x}{L} e^{-(n \pi / L)^{2} t} \quad(n=1,2, \ldots)
$$

\ddagger The introduction of λ is not unique. So, $T^{\prime}(t)=-\lambda T(t), X^{\prime \prime}(x)=-\lambda X(x)$, and $T^{\prime}(t)=2 \lambda T(t)$, $X^{\prime \prime}(x)=2 \lambda X(x)$ are all fine. The final solution $u(x, t)$ will be the same.
\S In the case of $\lambda>0$, we can also write $\left(A_{1} e^{k x}+A_{2} e^{-k x}\right) e^{k^{2} t}$. In the case of $\lambda<0$, we can also write $\left(A_{1} e^{i l x}+A_{2} e^{-i l x}\right) e^{-l^{2} t}$.

Homework Set 2, Problem 6(b) Find the Fourier cosine series for $f(x)=e^{x}, 0<x<L$.

Solution We extend $f(x)$ to the interval $-L<x<L$ by defining $\|$

$$
f_{E}(x)= \begin{cases}e^{x} & \text { for } 0<x<L \\ 0 & \text { for } x=0 \\ e^{-x} & \text { for }-L<x<0\end{cases}
$$

We consider the Fourier series for this even function f_{E}. Note that $B_{n}=0$. We have

$$
A_{0}=\frac{1}{2 L} \int_{-L}^{L} f_{E}(x) d x=\frac{1}{2 L}\left(\int_{0}^{L} e^{x} d x+\int_{-L}^{0} e^{-x} d x\right) .
$$

By $y=-x$, the second integral is $\int_{-L}^{0} e^{-x} d x=\int_{L}^{0} e^{y}(-d y)=\int_{0}^{L} e^{y} d y$. \mathbb{T} Hence,

$$
A_{0}=\frac{1}{L} \int_{0}^{L} e^{x} d x=\frac{e^{L}-1}{L} .
$$

Similarly,

$$
A_{n}=\frac{1}{L} \int_{L}^{L} f_{E}(x) \cos \frac{n \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} e^{x} \cos \frac{n \pi x}{L} d x
$$

By using Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta,{ }^{+}$

$$
A_{n}=\frac{1}{L} \int_{0}^{L} e^{x}\left(e^{i n \pi x / L}+e^{-i n x / L}\right) d x=\frac{1}{L}(I+\bar{I})=\frac{2}{L} \operatorname{Re} I
$$

where \bar{I} is the complex conjugate of I and
$I=\int_{0}^{L} e^{(1+i n \pi / L) x} d x=\left.\frac{e^{(1+i n \pi / L) x}}{1+i n \pi / L}\right|_{0} ^{L}=\frac{e^{L} e^{i n \pi}-1}{1+i n \pi / L}=\frac{1-i n \pi / L}{1+(n \pi / L)^{2}}\left(e^{L}(-1)^{n}-1\right)$.
Therefore we obtain

$$
A_{n}=\frac{2}{L} \frac{e^{L}(-1)^{n}-1}{1+(n \pi / L)^{2}}
$$

The Fourier cosine series is obtained as

$$
e^{x}=\frac{e^{L}-1}{L}+\frac{2}{L} \sum_{n=1}^{\infty} \frac{e^{L}(-1)^{n}-1}{1+(n \pi / L)^{2}} \cos \frac{n \pi x}{L} .
$$

$\|$ In this case, $f_{E}(0)$ is not necessarily zero.

- Since f_{E} is even, actually we can immediately write down $\frac{1}{2 L} \int_{-L}^{L} f_{E}(x) d x=\frac{1}{L} \int_{0}^{L} f_{E}(x) d x$.
+ We can also use integration by parts: $\int_{0}^{L} e^{x} \cos \frac{n \pi x}{L} d x=\left.e^{x} \frac{L}{n \pi} \sin \frac{n \pi x}{L}\right|_{0} ^{L}-\frac{L}{n \pi} \int_{0}^{L} e^{x} \sin \frac{n \pi x}{L} d x=$ $-\frac{L}{n \pi}\left(-\left.e^{x} \frac{L}{n \pi} \cos \frac{n \pi x}{L}\right|_{0} ^{L}+\frac{L}{n \pi} \int_{0}^{L} e^{x} \cos \frac{n \pi x}{L} d x\right)$. By comparing the leftmost side and the rightmost side, we obtain

$$
\int_{0}^{L} e^{x} \cos \frac{n \pi x}{L} d x=\left[1+\left(\frac{L}{n \pi}\right)^{2}\right]^{-1}\left(-\frac{L}{n \pi}\right)^{2}\left(e^{L} \cos n \pi-1\right)=\frac{e^{L}(-1)^{n}-1}{1+(n \pi / L)^{2}}
$$

Homework Set 3, Problem 3(a) Write out Parseval's theorem for the Fourier series of $f(x)=1$ for $0<x<\pi, f(0)=0$, and $f(x)=-1$ for $-\pi<x<0$.

Solution Since $f(x)$ is an odd function, Parseval's theorem is written as

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{2}(x) d x=\frac{1}{2} \sum_{n=1}^{\infty} B_{n}^{2}
$$

Here,
$B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) d x=\left.\frac{2}{\pi} \frac{-1}{n} \cos (n x)\right|_{0} ^{\pi}=\frac{2\left(1-(-1)^{n}\right)}{n \pi}$.
Hence, $B_{n}^{2}=16 /(n \pi)^{2}$ if n is odd and $B_{n}^{2}=0$ if n is even. On the other hand,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{2}(x) d x=\frac{1}{\pi} \int_{0}^{\pi} f^{2}(x) d x=1
$$

We obtain

$$
1=\frac{1}{2}\left(B_{1}^{2}+B_{3}^{2}+B_{5}^{2}+\cdots\right)=\frac{8}{\pi^{2}}\left(1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots\right) .
$$

Finally we obtain

$$
\frac{\pi^{2}}{8}=1+\frac{1}{9}+\frac{1}{25}+\cdots
$$

Homework Set 3, Problem 3(b) Write out Parseval's theorem for the Fourier series of $f(x)=x^{2},-\pi \leq x \leq \pi$.

Solution Since $f(x)$ is an even function, Parseval's theorem is written as

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{2}(x) d x=A_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty} A_{n}^{2}
$$

Here,

$$
\begin{aligned}
& A_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi} f(x) d x=\frac{\pi^{2}}{3} \\
& A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos (n x) d x=\frac{4(-1)^{n}}{n^{2}}
\end{aligned}
$$

Moreover,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{2}(x) d x=\frac{1}{\pi} \int_{0}^{\pi} f^{2}(x) d x=\frac{\pi^{4}}{5}
$$

We obtain

$$
\frac{\pi^{4}}{5}=\frac{\pi^{4}}{9}+8\left(1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots\right)
$$

Finally we obtain

$$
\frac{\pi^{4}}{90}=1+\frac{1}{16}+\frac{1}{81}+\cdots
$$

