
Winter 2014 Math 454

More Solutions for Midterm 1

To prepare for the exam, read your notes (and lecture notes on the web site) in addition

to the textbook. Go over homework problems and quizzes. I wrote a few more solutions

to homework problem sets.
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Homework Set 1, Problem 7 Find the separated solutions u(x, t) of the heat equation

ut−uxx = 0 in the region 0 < x < L, t > 0, that satisfy the boundary conditions u(0, t) = 0,

u(L, t) = 0.

Solution We look for a separated solution u(x, t) = X(x)T (t). We get

T ′

T
−

X ′′

X
= 0.

By introducing the separation constant λ, we obtain ‡

T ′(t) = λT (t), X ′′(x) = λX(x).

Thus, for three cases λ > 0, λ = 0, and λ < 0, we have §

u(x, t) =















(A1 cosh(kx) + A2 sinh(kx)) e
k2t for λ = k2, k > 0,

A1x+ A2 for λ = 0,

(A1 cos(lx) + A2 sin(lx)) e
−l2t for λ = −l2, l > 0.

For λ > 0, the boundary conditions imply A1 = A2 = 0. Similarly for λ = 0, we can conclude

A1 = A2 = 0. Only the case λ < 0 has nontrivial solutions. From the boundary conditions,

we have A1 = 0 and sin(lL) = 0. Hence lL = nπ (n = 0,±1,±2, . . .). Let C be a constant.

We obtain

u(x, t) = C sin
nπx

L
e−(nπ/L)2t (n = 1, 2, . . .).

‡ The introduction of λ is not unique. So, T ′(t) = −λT (t), X ′′(x) = −λX(x), and T ′(t) = 2λT (t),

X ′′(x) = 2λX(x) are all fine. The final solution u(x, t) will be the same.

§ In the case of λ > 0, we can also write
(

A1e
kx +A2e

−kx
)

ek
2
t. In the case of λ < 0, we can also write

(

A1e
ilx +A2e

−ilx
)

e−l
2
t.
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Homework Set 2, Problem 6(b) Find the Fourier cosine series for f(x) = ex, 0 < x < L.

Solution We extend f(x) to the interval −L < x < L by defining ‖

fE(x) =











ex for 0 < x < L,

0 for x = 0,

e−x for −L < x < 0.

We consider the Fourier series for this even function fE. Note that Bn = 0. We have

A0 =
1

2L

∫ L

−L

fE(x)dx =
1

2L

(
∫ L

0

exdx+

∫ 0

−L

e−xdx

)

.

By y = −x, the second integral is
∫ 0

−L
e−xdx =

∫ 0

L
ey(−dy) =

∫ L

0
eydy.¶ Hence,

A0 =
1

L

∫ L

0

exdx =
eL − 1

L
.

Similarly,

An =
1

L

∫ L

L

fE(x) cos
nπx

L
dx =

2

L

∫ L

0

ex cos
nπx

L
dx.

By using Euler’s formula eiθ = cos θ + i sin θ,+

An =
1

L

∫ L

0

ex
(

einπx/L + e−inx/L
)

dx =
1

L

(

I + Ī
)

=
2

L
Re I,

where Ī is the complex conjugate of I and

I =

∫ L

0

e(1+inπ/L)xdx =
e(1+inπ/L)x

1 + inπ/L

∣

∣

∣

∣

L

0

=
eLeinπ − 1

1 + inπ/L
=

1− inπ/L

1 + (nπ/L)2
(

eL(−1)n − 1
)

.

Therefore we obtain

An =
2

L

eL(−1)n − 1

1 + (nπ/L)2
.

The Fourier cosine series is obtained as

ex =
eL − 1

L
+

2

L

∞
∑

n=1

eL(−1)n − 1

1 + (nπ/L)2
cos

nπx

L
.

‖ In this case, fE(0) is not necessarily zero.

¶ Since fE is even, actually we can immediately write down 1

2L

∫

L

−L
fE(x)dx = 1

L

∫

L

0
fE(x)dx.

+ We can also use integration by parts:
∫

L

0
ex cos nπx

L
dx = ex L

nπ
sin nπx

L

∣

∣

L

0
− L

nπ

∫

L

0
ex sin nπx

L
dx =

− L

nπ

(

−ex L

nπ
cos nπx

L

∣

∣

L

0
+ L

nπ

∫

L

0
ex cos nπx

L
dx

)

. By comparing the leftmost side and the rightmost side, we

obtain
∫

L

0

ex cos
nπx

L
dx =

[

1 +

(

L

nπ

)2
]

−1
(

−
L

nπ

)2
(

eL cosnπ − 1
)

=
eL(−1)n − 1

1 + (nπ/L)2
.
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Homework Set 3, Problem 3(a) Write out Parseval’s theorem for the Fourier series of

f(x) = 1 for 0 < x < π, f(0) = 0, and f(x) = −1 for −π < x < 0.

Solution Since f(x) is an odd function, Parseval’s theorem is written as

1

2π

∫ π

−π

f 2(x)dx =
1

2

∞
∑

n=1

B2
n.

Here,

Bn =
1

π

∫ π

−π

f(x) sin(nx)dx =
2

π

∫ π

0

sin(nx)dx =
2

π

−1

n
cos(nx)

∣

∣

∣

∣

π

0

=
2 (1− (−1)n)

nπ
.

Hence, B2
n = 16/(nπ)2 if n is odd and B2

n = 0 if n is even. On the other hand,

1

2π

∫ π

−π

f 2(x)dx =
1

π

∫ π

0

f 2(x)dx = 1.

We obtain

1 =
1

2

(

B2
1 + B2

3 + B2
5 + · · ·

)

=
8

π2

(

1 +
1

32
+

1

52
+ · · ·

)

.

Finally we obtain

π2

8
= 1 +

1

9
+

1

25
+ · · · .

4



Homework Set 3, Problem 3(b) Write out Parseval’s theorem for the Fourier series of

f(x) = x2, −π ≤ x ≤ π.

Solution Since f(x) is an even function, Parseval’s theorem is written as

1

2π

∫ π

−π

f 2(x)dx = A2
0 +

1

2

∞
∑

n=1

A2
n.

Here,

A0 =
1

2π

∫ π

−π

f(x)dx =
1

π

∫ π

0

f(x)dx =
π2

3
,

An =
1

π

∫ π

−π

f(x) cos(nx)dx =
2

π

∫ π

0

x2 cos(nx)dx =
4(−1)n

n2
.

Moreover,

1

2π

∫ π

−π

f 2(x)dx =
1

π

∫ π

0

f 2(x)dx =
π4

5
.

We obtain

π4

5
=

π4

9
+ 8

(

1 +
1

24
+

1

34
+ · · ·

)

.

Finally we obtain

π4

90
= 1 +

1

16
+

1

81
+ · · · .
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