MATH 454 SECTION 002
MIDTERM 2

March 24, 2014, Instructor: Manabu Machida

Name:

To receive full credit you must show all your work.
Formulae listed at the end can be used without proof.
Theorems listed at the end can be used without proof.

You can also use results from other problems, e.g., you can use Problem 1 when you
solve Problem 2.

One side of a US letter size paper (8.5 x 11") with notes is OK.
You can use the back side of a paper if you need. Indicate where your calculation jumps.
NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Problem | Points | Score

1 10
2 10
3 10
4 10

TOTAL | 40




Problem 1. (10 points) Let us consider the Sturm-Liouville eigenproblem ¢” (z)+u¢(z) = 0,
¢(0) = ¢/(L) = 0. The eigenvalues are p = p(™ = [(m — %)W/L}Q, m = 1,2,..., and the
eigenfunctions are ¢(z) = ¢(™ (x) = sin <\/ u(m)az>. We consider integrals of ¢(™ (x).

L L L L 2

We haveL/0 [¢(m)(x)]2d$ =3 and /0 2™ (2)dx = {m] (—1)m+t
(e —

Show/0 o™ (x)dx = =D

Solution

L L 1
/ o™ (z)dx = / sin de
0 0 L




Problem 2. (10 points) Consider the heat equation u; = K'V?u in the column 0 < z < L,
0 < y < L with the boundary conditions w(0,y,t) = 0, u.(L,y,t) = 0, u(z,0,t) = 0,
uy(z,L,t) = 0 and the initial condition u(z,y,0) = 0.25. Find u(x,y,t). You can use
theorems listed at the end of this problem set. But state clearly which theorems you use.

Solution If we write u(z,y,t) = ¢1(x)p2(y)T(t), we can introduce separation constants

as T/ = —)\K, z: = —Uq, (:Z; = —lg, where A = 1 + po. Using Problem 1, we can solve

o7 + g1 =0, ¢1(0) = ¢1(L) = 0, and ¢y + padpa = 0, ¢5(0) = ¢2(L) = 0 as
1

m Ehu g

o1 (x) = sin(/paz), o = [%r $2(y) = sin(\/p2y),  p2 = { 7

where m,n = 1,2,.... We can also solve T" + AKT = 0 as T'(t) = e *%*. Thus the general
solution is written as

l‘ ya Zzan¢1 ( ) _AmnKt7

m=1 n=1

where A, = [(m — %)7?/[)]2 + [(n— %)W/L}Z.
By the initial condition we have

1= 203 B ),
m/=1n'=1
We multiply ¢\™ (z)¢{" (y) on both sides and integrate both sides over z, y:

- Ll (m) (n) drdy — b EOO( S (m") (n') (m) (n) drd
4¢1 (x) 2 (y) ray E By 1 ($)¢2 (y) 1 ($)¢2 (?J) ray.
o Jo 0

0 mr=1n=1

m) 1 L L
s =1 [ oy [ o e = (n_%)w,
RHS = /ZU;BM/ o da:/ o) (y)dy = Bpn "y
where we used fo 1 ( )¢>§m)( )dx = 0 (m' # m) and fo )gz52 ( Ydy = 0 (n' # n)

[(m — D)~ [(n — 3)m]~!. Finally we obtain

from Theorem 3 on the last page. Hence B,,, 5

(g 1) = % f: sin[(m ﬂ—li)(;m:/L)] sin[(n ;%)iwy/L)] -



(continued)

Remark The orthogonality relations used in this problem
/L sin (n = %)ﬂ-x sin (m = %)wz
0 L L
are different from the orthogonality relations in Theorem 2. The present orthogonality relations are rather
direct consequence of Theorem 3. Let us put s(z) =1, p(z) =1, ¢(z) =0,a=0,b=L, a=7/2, =01n
Theorem 3. We obtain

¢"(x) + Ap(z) =0, 0<z<L,  ¢'(0)=¢(L)=0.
If we write A = \,,, ¢(z) = ¢(™ (), Theorem 3 states
L
/ o™ ()" (z)dx = 0 for A, # Am
0

We can prove this without using explicit form of ¢(x) and A as follows (see Chapter 1). Suppose n # m and
An # Am. We write

o (@) + Ao (@) =0, 6™ (@) + Xuo™ (@) = 0.
By multiplying ¢(™ () (¢ (z)) and integrating over x, we obtain

L " L / L
/ ¢(n) (m)¢(m)(x)dm =+ )\n/ ¢(")(x)¢(m) (x) — ¢(n) (x)qb(m)(x)‘ _
0

dx =0, forn#m (n,m=1,2,...)

L L
= e @e @e a6 @e @)

/¢(" 60 (2)dz + A / 6 ()™ (z) = 0,

and similarly

L I L L , , L
[ o @o ot A [ 9 @) @ =~ [ 6 @) @)+ A [ 6 (@) () = 0
0 0 0 0

By subtraction we obtain
L
) [ 6 @6 @)ds =0,
0

L
This completes the proof. The above calculation holds as long as gb(”)/(x)qﬁ(m)(x)’ vanishes.
0

It is possible to derive from Theorem 2 but the following computation is necessary.

/OL sin (n 7L%)7m sin (m —L%)mv dx
Lr  nrx T nwr . wx) [ . mnx T mnT , 7T
= /o [sm —[ CoS5y —cos——sin ﬁ} [sm 7 Cos gy —cos——sin ﬁ] dx
1 Y nrx | omma 1 [t nmwr MTT T
:5/0 sstm T (1+cosf)da:+2/o COSTCOS T (l—cosf)da?
1 [F . nrx mmnx T 1 [F nwTr . MTT T
75/0 smTcos 17 sin fdxf 5/0 cosTsm 7 sin fd:z:
1 (. oz mnx 1 [t nmwr mnx
:5/0 SIDTSI dx—|—2/0 cosTcos T dx
—;/OLCOSWCOS?CZI— ;/()Lsinmlin)mrsinzxdz
USRS T P TUR o



Problem 3. (10 points) Let us consider the temperature in the steady state which is given as
a solution to the heat equation u; = Ku,, in the slab 0 < z < L. If the boundary conditions
are given by u(0,t) = T3, u,(L,t) = P9, then the steady-state temperature is T} + ®5z. Find
the steady-state temperature for the bondary conditions u,(0,t) = @y, u(L,t) = Ts.

Solution Since the solution is independent of ¢, let us write U(z) = u(z,t). The general
solution to u,, =0 << U” =0 is written as

U(z) = A+ Bz.
Hence

u(0,t) =P, = U(0)=d; = B=d,
and

u(ll,it) =T, = UL)=T = A+dL=T = A=T,—dL.
Finally the steady-state solution is obtained as

u(z,t) =U(z) =Ty — O1(L — 2).



Problem 4. (10 points) Solve the initial-value problem for the heat equation u; = Ku,,
with the boundary conditions u(0,t) = T, u,(L,t) = ® and the initial condition u(z,0) =T,
where K, ®,T" are positive constants.

Solution Step 1 We find the steady-state solution U(z) satisfying U”(z) = 0, U(0) = T,
U'(L) = ®. By Problem 3, we obtain

U(z) =T+ ®z.

Step 2 We introduce v(z,t) = U(z) — u(z,t), which obeys v; = Kuv,,, v(0,t) = v,(L,t) = 0,
v(z,0) =T —U(z).
Step 3 We write v(z,t) = ¢(2)T(t), where ¢" + A\¢p =0, ¢p(0) = ¢'(L) =0, T" + AKT = 0.
Using Problem 1, we obtain
_1 — L2
6(2) = 6™ () = sm%, A=\ — {w} Com=1.2,. ...

Thus the general solution is
v(z,t) = i Am¢(m)(z)e_)‘(m>m,
m=1
where A,, are constants. The coefficients are determined by
—dz = i A ™ (2).
m=1
We multiply ¢ (z) on both sides and integrate over z:

/0 (—®)z¢") (2)dz = /0 DA™ (2)¢" (2)dz.

Using the orthogonality relations fOL ¢™ (2)¢™(2)dz = 0 (m # n) from Theorem 3 on the
last page, we have

~d /0 ’ 2™ (2)dz = A, /0 ’ (6 ()] d=.

Using Problem 1, we obtain




(continued)



Formulae

coshx:i, sinhx = l, tanhx:l
2 2 et 4+ e *
cosh®z —sinh®2 =1, cosh(—x) = coshz, sinh(—x) = —sinhx
2 12 . . 2tanh x
cosh(2z) = cosh” x + sinh”x, sinh(2x) = 2sinhz coshz, tanh(2z) = ———
1+ tanh® x
h2 1 h2xr —1 1
cosh2x:M, sin 2:10:M, 1—tanh2a::sech2x:—2
2 2 cosh” z
d cosh d sinh d tanh 1
COSAT _ sinh x, ST cosh z, AT _ sech?z = 5
dx dx T cosh” x

cos(A + B) = cos Acos B F sin Asin B
sin(A + B) = sin A cos B 4 cos Asin B
tan A & tan B
1F tan Atan B

tan(A £ B) =

1
cos Acos B = 5 [cos(A — B) + cos(A + B)]
1

sin Asin B = 5 [cos(A — B) — cos(A + B)]
sin Acos B = % [sin(A + B) +sin(A — B)]
cos Asin B = % [sin(A + B) — sin(A — B)]

cosh(A + B) = cosh A cosh B + sinh Asinh B

sinh(A + B) = sinh A cosh B =+ cosh Asinh B
tanh A &+ tanh B
1 &+ tanh Atanh B

tanh(A £+ B) =

cosh A cosh B = = [cosh(A + B) + cosh(A — B)]

— DN =

sinh Asinh B = = [cosh(A + B) — cosh(A — B)]

— DN

sinh A cosh B = — [sinh(A + B) + sinh(A — B)]

— DN

cosh Asinh B = 5 [sinh(A + B) — sinh(A — B)]



Theorems

Theorem 1. For m,n =1,2,---, we have
L
/ cos nr cos mre dx = Loy,
L L L
L
/ sin nE sin mre dx = Lo,
_I L
L nmwx mmnx
/ sin —— cos dr = 0.
_I L L
Theorem 2. For m,n=1,2,---, we have
L
L
/ cos nre cos mre dr = —dpm,
0 L L 2
L
L
/ sin nr sin mre dx Onms
0 L L 2
2L
L NnTT MTT % fOI' odd n + m,
/ sin —— cos dr = { ™(n*—m?)
0 L L .
otherwise.

Theorem 3. Consider the Sturm-Liouville problem
[s(x) ()" + [Ap(x) — q(@)]é(x) =0, a <z <b,
where p(z) > 0, with the boundary conditions
d(a)cosa — Lo (a)sina =0,  ¢(b) cos 8+ L' (b) sin § = 0,

where L = b — a, and o, € [0,7) are some parameters. Suppose that ¢;(x), po(x)
are nontrivial solutions with different eigenvalues A\; # Ay. Then the eigenfunctions are
orthogonal with respect to the weight function p(x), a < z < b:

/ 1 (2) s () ()l = 0.

Theorem 4. For m,n =1,2,---, we have

/L2 /Ll . mmr . nwy . m'rr n’wyd p L1L25 5
sin sin sin sin xdy = ! O
o Jo L L, L L, YTy




