MATH 454 SECTION 002 MIDTERM 2

March 24, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- Formulae listed at the end can be used without proof.
- Theorems listed at the end can be used without proof.
- You can also use results from other problems, e.g., you can use Problem 1 when you solve Problem 2.
- One side of a US letter size paper $\left(8.5^{\prime \prime} \times 11^{\prime \prime}\right)$ with notes is OK.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
TOTAL	40	

Problem 1. (10 points) Let us consider the Sturm-Liouville eigenproblem $\phi^{\prime \prime}(x)+\mu \phi(x)=0$, $\phi(0)=\phi^{\prime}(L)=0$. The eigenvalues are $\mu=\mu^{(m)}=\left[\left(m-\frac{1}{2}\right) \pi / L\right]^{2}, m=1,2, \ldots$, and the eigenfunctions are $\phi(x)=\phi^{(m)}(x)=\sin \left(\sqrt{\mu^{(m)}} x\right)$. We consider integrals of $\phi^{(m)}(x)$.
We have $\int_{0}^{L}\left[\phi^{(m)}(x)\right]^{2} d x=\frac{L}{2}$ and $\int_{0}^{L} x \phi^{(m)}(x) d x=\left[\frac{L}{\left(m-\frac{1}{2}\right) \pi}\right]^{2}(-1)^{m+1}$.
Show $\int_{0}^{L} \phi^{(m)}(x) d x=\frac{L}{\left(m-\frac{1}{2}\right) \pi}$.

Solution

$$
\begin{aligned}
\int_{0}^{L} \phi^{(m)}(x) d x & =\int_{0}^{L} \sin \frac{\left(m-\frac{1}{2}\right) \pi x}{L} d x \\
& =\left.\frac{-L}{\left(m-\frac{1}{2}\right) \pi} \cos \frac{\left(m-\frac{1}{2}\right) \pi x}{L}\right|_{0} ^{L} \\
& =\frac{L}{\left(m-\frac{1}{2}\right) \pi}
\end{aligned}
$$

Problem 2. (10 points) Consider the heat equation $u_{t}=K \nabla^{2} u$ in the column $0<x<L$, $0<y<L$ with the boundary conditions $u(0, y, t)=0, u_{x}(L, y, t)=0, u(x, 0, t)=0$, $u_{y}(x, L, t)=0$ and the initial condition $u(x, y, 0)=0.25$. Find $u(x, y, t)$. You can use theorems listed at the end of this problem set. But state clearly which theorems you use.

Solution If we write $u(x, y, t)=\phi_{1}(x) \phi_{2}(y) T(t)$, we can introduce separation constants as $\frac{T^{\prime}}{T}=-\lambda K, \frac{\phi_{1}^{\prime \prime}}{\phi_{1}}=-\mu_{1}, \frac{\phi_{2}^{\prime \prime}}{\phi_{2}}=-\mu_{2}$, where $\lambda=\mu_{1}+\mu_{2}$. Using Problem 1, we can solve $\phi_{1}^{\prime \prime}+\mu_{1} \phi_{1}=0, \phi_{1}^{\prime}(0)=\phi_{1}(L)=0$, and $\phi_{2}^{\prime \prime}+\mu_{2} \phi_{2}=0, \phi_{2}^{\prime}(0)=\phi_{2}(L)=0$ as $\phi_{1}(x)=\sin \left(\sqrt{\mu_{1}} x\right), \quad \mu_{1}=\left[\frac{\left(m-\frac{1}{2}\right) \pi}{L}\right]^{2}, \quad \phi_{2}(y)=\sin \left(\sqrt{\mu_{2}} y\right), \quad \mu_{2}=\left[\frac{\left(n-\frac{1}{2}\right) \pi}{L}\right]^{2}$,
where $m, n=1,2, \ldots$. We can also solve $T^{\prime}+\lambda K T=0$ as $T(t)=e^{-\lambda K t}$. Thus the general solution is written as

$$
u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m n} \phi_{1}^{(m)}(x) \phi_{2}^{(n)}(y) e^{-\lambda_{m n} K t}
$$

where $\lambda_{m n}=\left[\left(m-\frac{1}{2}\right) \pi / L\right]^{2}+\left[\left(n-\frac{1}{2}\right) \pi / L\right]^{2}$.
By the initial condition we have

$$
\frac{1}{4}=\sum_{m^{\prime}=1}^{\infty} \sum_{n^{\prime}=1}^{\infty} B_{m^{\prime} n^{\prime}} \phi_{1}^{\left(m^{\prime}\right)}(x) \phi_{2}^{\left(n^{\prime}\right)}(y)
$$

We multiply $\phi_{1}^{(m)}(x) \phi_{2}^{(n)}(y)$ on both sides and integrate both sides over x, y :

$$
\begin{aligned}
& \int_{0}^{L} \int_{0}^{L} \frac{1}{4} \phi_{1}^{(m)}(x) \phi_{2}^{(n)}(y) d x d y=\int_{0}^{L} \int_{0}^{L} \sum_{m^{\prime}=1}^{\infty} \sum_{n^{\prime}=1}^{\infty} B_{m^{\prime} n^{\prime}} \phi_{1}^{\left(m^{\prime}\right)}(x) \phi_{2}^{\left(n^{\prime}\right)}(y) \phi_{1}^{(m)}(x) \phi_{2}^{(n)}(y) d x d y . \\
& \text { LHS }=\frac{1}{4} \int_{0}^{L} \phi_{2}^{(n)}(y) d y \int_{0}^{L} \phi_{1}^{(m)}(x) d x=\frac{1}{4} \frac{L}{\left(m-\frac{1}{2}\right) \pi} \frac{L}{\left(n-\frac{1}{2}\right) \pi}, \\
& \mathrm{RHS}=\sum_{m^{\prime}=1}^{\infty} \sum_{n^{\prime}=1}^{\infty} B_{m^{\prime} n^{\prime}} \int_{0}^{L_{1}} \phi_{1}^{\left(m^{\prime}\right)}(x) \phi_{1}^{(m)}(x) d x \int_{0}^{L_{2}} \phi_{2}^{\left(n^{\prime}\right)}(y) \phi_{2}^{(n)}(y) d y=B_{m n} \frac{L}{2} \frac{L}{2},
\end{aligned}
$$

where we used $\int_{0}^{L} \phi_{1}^{\left(m^{\prime}\right)}(x) \phi_{1}^{(m)}(x) d x=0\left(m^{\prime} \neq m\right)$ and $\int_{0}^{L} \phi_{2}^{\left(n^{\prime}\right)}(y) \phi_{2}^{(n)}(y) d y=0\left(n^{\prime} \neq n\right)$ from Theorem 3 on the last page. Hence $B_{m n}=\left[\left(m-\frac{1}{2}\right) \pi\right]^{-1}\left[\left(n-\frac{1}{2}\right) \pi\right]^{-1}$. Finally we obtain

$$
u(x, y, t)=\frac{1}{\pi^{2}} \sum_{m, n=1}^{\infty} \frac{\sin \left[\left(m-\frac{1}{2}\right)(\pi x / L)\right]}{m-\frac{1}{2}} \frac{\sin \left[\left(n-\frac{1}{2}\right)(\pi y / L)\right]}{n-\frac{1}{2}} e^{-\lambda_{m n} K t} .
$$

(continued)

Remark The orthogonality relations used in this problem

$$
\int_{0}^{L} \sin \frac{\left(n-\frac{1}{2}\right) \pi x}{L} \sin \frac{\left(m-\frac{1}{2}\right) \pi x}{L} d x=0, \quad \text { for } n \neq m \quad(n, m=1,2, \ldots)
$$

are different from the orthogonality relations in Theorem 2. The present orthogonality relations are rather direct consequence of Theorem 3. Let us put $s(x)=1, \rho(x)=1, q(x)=0, a=0, b=L, \alpha=\pi / 2, \beta=0$ in Theorem 3. We obtain

$$
\phi^{\prime \prime}(x)+\lambda \phi(x)=0, \quad 0<x<L, \quad \phi^{\prime}(0)=\phi(L)=0 .
$$

If we write $\lambda=\lambda_{n}, \phi(x)=\phi^{(n)}(x)$, Theorem 3 states

$$
\int_{0}^{L} \phi^{(n)}(x) \phi^{(m)}(x) d x=0 \quad \text { for } \quad \lambda_{n} \neq \lambda_{m} .
$$

We can prove this without using explicit form of $\phi(x)$ and λ as follows (see Chapter 1). Suppose $n \neq m$ and $\lambda_{n} \neq \lambda_{m}$. We write

$$
\phi^{(n)^{\prime \prime}}(x)+\lambda_{n} \phi^{(n)}(x)=0, \quad \phi^{(m)^{\prime \prime}}(x)+\lambda_{m} \phi^{(m)}(x)=0 .
$$

By multiplying $\phi^{(m)}(x)\left(\phi^{(n)}(x)\right)$ and integrating over x, we obtain

$$
\begin{gathered}
\int_{0}^{L} \phi^{(n)^{\prime \prime}}(x) \phi^{(m)}(x) d x+\lambda_{n} \int_{0}^{L} \phi^{(n)}(x) \phi^{(m)}(x)=\left.\phi^{(n)^{\prime}}(x) \phi^{(m)}(x)\right|_{0} ^{L}-\int_{0}^{L} \phi^{(n)^{\prime}}(x) \phi^{(m)^{\prime}}(x) d x+\lambda_{n} \int_{0}^{L} \phi^{(n)}(x) \phi^{(m)}(x) \\
=-\int_{0}^{L} \phi^{(n)^{\prime}}(x) \phi^{(m)^{\prime}}(x) d x+\lambda_{n} \int_{0}^{L} \phi^{(n)}(x) \phi^{(m)}(x)=0,
\end{gathered}
$$

and similarly
$\int_{0}^{L} \phi^{(m)^{\prime \prime}}(x) \phi^{(n)}(x) d x+\lambda_{m} \int_{0}^{L} \phi^{(m)}(x) \phi^{(n)}(x) d x=-\int_{0}^{L} \phi^{(m)^{\prime}}(x) \phi^{(n)^{\prime}}(x) d x+\lambda_{m} \int_{0}^{L} \phi^{(m)}(x) \phi^{(n)}(x)=0$.
By subtraction we obtain

$$
\left(\lambda_{n}-\lambda_{m}\right) \int_{0}^{L} \phi^{(n)}(x) \phi^{(m)}(x) d x=0 .
$$

This completes the proof. The above calculation holds as long as $\left.\phi^{(n)}{ }^{\prime}(x) \phi^{(m)}(x)\right|_{0} ^{L}$ vanishes.
It is possible to derive from Theorem 2 but the following computation is necessary.

$$
\begin{aligned}
\int_{0}^{L} \sin \frac{\left(n-\frac{1}{2}\right) \pi x}{L} & \sin \frac{\left(m-\frac{1}{2}\right) \pi x}{L} d x \\
& =\int_{0}^{L}\left[\sin \frac{n \pi x}{L} \cos \frac{\pi x}{2 L}-\cos \frac{n \pi x}{L} \sin \frac{\pi x}{2 L}\right]\left[\sin \frac{m \pi x}{L} \cos \frac{\pi x}{2 L}-\cos \frac{m \pi x}{L} \sin \frac{\pi x}{2 L}\right] d x \\
& =\frac{1}{2} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L}\left(1+\cos \frac{\pi x}{L}\right) d x+\frac{1}{2} \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L}\left(1-\cos \frac{\pi x}{L}\right) d x \\
& -\frac{1}{2} \int_{0}^{L} \sin \frac{n \pi x}{L} \cos \frac{m \pi x}{L} \sin \frac{\pi x}{L} d x-\frac{1}{2} \int_{0}^{L} \cos \frac{n \pi x}{L} \sin \frac{m \pi x}{L} \sin \frac{\pi x}{L} d x \\
& =\frac{1}{2} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x+\frac{1}{2} \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x \\
& -\frac{1}{2} \int_{0}^{L} \cos \frac{(n+m) \pi x}{L} \cos \frac{\pi x}{L} d x-\frac{1}{2} \int_{0}^{L} \sin \frac{(n+m) \pi x}{L} \sin \frac{\pi x}{L} d x \\
& =\frac{L}{4} \delta_{n m}+\frac{L}{4} \delta_{n m}-\frac{L}{4} \delta_{n+m, 1}-\frac{L}{4} \delta_{n+m, 1}=\frac{L}{2} \delta_{n m} .
\end{aligned}
$$

Problem 3. (10 points) Let us consider the temperature in the steady state which is given as a solution to the heat equation $u_{t}=K u_{z z}$ in the slab $0<z<L$. If the boundary conditions are given by $u(0, t)=T_{1}, u_{z}(L, t)=\Phi_{2}$, then the steady-state temperature is $T_{1}+\Phi_{2} z$. Find the steady-state temperature for the bondary conditions $u_{z}(0, t)=\Phi_{1}, u(L, t)=T_{2}$.

Solution Since the solution is independent of t, let us write $U(z)=u(z, t)$. The general solution to $u_{z z}=0 \quad \Leftrightarrow \quad U^{\prime \prime}=0$ is written as

$$
U(z)=A+B z
$$

Hence

$$
u_{z}(0, t)=\Phi_{1} \quad \Rightarrow \quad U^{\prime}(0)=\Phi_{1} \quad \Rightarrow \quad B=\Phi_{1},
$$

and

$$
u(L, t)=T_{2} \quad \Rightarrow \quad U(L)=T_{2} \quad \Rightarrow \quad A+\Phi_{1} L=T_{2} \quad \Rightarrow \quad A=T_{2}-\Phi_{1} L
$$

Finally the steady-state solution is obtained as

$$
u(z, t)=U(z)=T_{2}-\Phi_{1}(L-z) .
$$

Problem 4. (10 points) Solve the initial-value problem for the heat equation $u_{t}=K u_{z z}$ with the boundary conditions $u(0, t)=T, u_{z}(L, t)=\Phi$ and the initial condition $u(z, 0)=T$, where K, Φ, T are positive constants.

Solution Step 1 We find the steady-state solution $U(z)$ satisfying $U^{\prime \prime}(z)=0, U(0)=T$, $U^{\prime}(L)=\Phi$. By Problem 3, we obtain

$$
U(z)=T+\Phi z .
$$

Step 2 We introduce $v(z, t)=U(z)-u(z, t)$, which obeys $v_{t}=K v_{z z}, v(0, t)=v_{z}(L, t)=0$, $v(z, 0)=T-U(z)$.
Step 3 We write $v(z, t)=\phi(z) T(t)$, where $\phi^{\prime \prime}+\lambda \phi=0, \phi(0)=\phi^{\prime}(L)=0, T^{\prime}+\lambda K T=0$. Using Problem 1, we obtain

$$
\phi(z)=\phi^{(m)}(z)=\sin \frac{\left(m-\frac{1}{2}\right) \pi z}{L}, \quad \lambda=\lambda^{(m)}=\left[\frac{\left(m-\frac{1}{2}\right) \pi}{L}\right]^{2}, \quad m=1,2, \ldots
$$

Thus the general solution is

$$
v(z, t)=\sum_{m=1}^{\infty} A_{m} \phi^{(m)}(z) e^{-\lambda^{(m)} K t}
$$

where A_{m} are constants. The coefficients are determined by

$$
-\Phi z=\sum_{m=1}^{\infty} A_{m} \phi^{(m)}(z)
$$

We multiply $\phi^{(n)}(z)$ on both sides and integrate over z :

$$
\int_{0}^{L}(-\Phi) z \phi^{(n)}(z) d z=\int_{0}^{L} \sum_{m=1}^{\infty} A_{m} \phi^{(m)}(z) \phi^{(n)}(z) d z .
$$

Using the orthogonality relations $\int_{0}^{L} \phi^{(m)}(z) \phi^{(n)}(z) d z=0(m \neq n)$ from Theorem 3 on the last page, we have

$$
-\Phi \int_{0}^{L} z \phi^{(n)}(z) d z=A_{n} \int_{0}^{L}\left[\phi^{(n)}(z)\right]^{2} d z
$$

Using Problem 1, we obtain

$$
A_{n}=\frac{2}{L}(-\Phi)\left[\frac{L}{\left(n-\frac{1}{2}\right) \pi}\right]^{2}(-1)^{n+1}=\frac{2 \Phi L}{\left(n-\frac{1}{2}\right)^{2} \pi^{2}}(-1)^{n} .
$$

Finally we obtain

$$
\begin{aligned}
u(z, t) & =U(z)+v(z, t) \\
& =T+\Phi z+\frac{2 \Phi L}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\left(n-\frac{1}{2}\right)^{2}} \sin \frac{(n-1 / 2) \pi z}{L} e^{-[(n-1 / 2) \pi / L]^{2} K t}
\end{aligned}
$$

(continued)

$$
\begin{aligned}
& \cosh x=\frac{e^{x}+e^{-x}}{2}, \quad \sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& \cosh ^{2} x-\sinh ^{2} x=1, \quad \cosh (-x)=\cosh x, \quad \sinh (-x)=-\sinh x \\
& \cosh (2 x)=\cosh ^{2} x+\sinh ^{2} x, \quad \sinh (2 x)=2 \sinh x \cosh x, \quad \tanh (2 x)=\frac{2 \tanh x}{1+\tanh ^{2} x} \\
& \cosh ^{2} x=\frac{\cosh 2 x+1}{2}, \quad \sinh ^{2} x=\frac{\cosh 2 x-1}{2}, \quad 1-\tanh ^{2} x=\operatorname{sech}^{2} x=\frac{1}{\cosh ^{2} x} \\
& \frac{d \cosh x}{d x}=\sinh x, \quad \frac{d \sinh x}{d x}=\cosh x, \quad \frac{d \tanh x}{d x}=\operatorname{sech}^{2} x=\frac{1}{\cosh ^{2} x}
\end{aligned}
$$

$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
$\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$
$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
$\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$
$\cos A \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)]$
$\cosh (A \pm B)=\cosh A \cosh B \pm \sinh A \sinh B$
$\sinh (A \pm B)=\sinh A \cosh B \pm \cosh A \sinh B$
$\tanh (A \pm B)=\frac{\tanh A \pm \tanh B}{1 \pm \tanh A \tanh B}$
$\cosh A \cosh B=\frac{1}{2}[\cosh (A+B)+\cosh (A-B)]$
$\sinh A \sinh B=\frac{1}{2}[\cosh (A+B)-\cosh (A-B)]$
$\sinh A \cosh B=\frac{1}{2}[\sinh (A+B)+\sinh (A-B)]$
$\cosh A \sinh B=\frac{1}{2}[\sinh (A+B)-\sinh (A-B)]$

Theorems

Theorem 1. For $m, n=1,2, \cdots$, we have

$$
\begin{aligned}
& \int_{-L}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x=L \delta_{n m}, \\
& \int_{-L}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=L \delta_{n m}, \\
& \int_{-L}^{L} \sin \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x=0 .
\end{aligned}
$$

Theorem 2. For $m, n=1,2, \cdots$, we have

$$
\begin{aligned}
& \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x=\frac{L}{2} \delta_{n m} \\
& \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\frac{L}{2} \delta_{n m}, \\
& \int_{0}^{L} \sin \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x= \begin{cases}\frac{2 L n}{\pi\left(n^{2}-m^{2}\right)} & \text { for odd } n+m \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem 3. Consider the Sturm-Liouville problem

$$
\left[s(x) \phi^{\prime}(x)\right]^{\prime}+[\lambda \rho(x)-q(x)] \phi(x)=0, \quad a<x<b,
$$

where $\rho(x)>0$, with the boundary conditions

$$
\phi(a) \cos \alpha-L \phi^{\prime}(a) \sin \alpha=0, \quad \phi(b) \cos \beta+L \phi^{\prime}(b) \sin \beta=0,
$$

where $L=b-a$, and $\alpha, \beta \in[0, \pi)$ are some parameters. Suppose that $\phi_{1}(x), \phi_{2}(x)$ are nontrivial solutions with different eigenvalues $\lambda_{1} \neq \lambda_{2}$. Then the eigenfunctions are orthogonal with respect to the weight function $\rho(x), a<x<b$:

$$
\int_{a}^{b} \phi_{1}(x) \phi_{2}(x) \rho(x) d x=0
$$

Theorem 4. For $m, n=1,2, \cdots$, we have

$$
\int_{0}^{L_{2}} \int_{0}^{L_{1}} \sin \frac{m \pi x}{L_{1}} \sin \frac{n \pi y}{L_{2}} \sin \frac{m^{\prime} \pi x}{L_{1}} \sin \frac{n^{\prime} \pi y}{L_{2}} d x d y=\frac{L_{1} L_{2}}{4} \delta_{m m^{\prime}} \delta_{n n^{\prime}}
$$

