MATH 454 SECTION 002 MIDTERM 1

February 5, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- Formulae listed at the end can be used without proof.
- One side of a US letter size paper $\left(8.5^{\prime \prime} \times 11^{\prime \prime}\right)$ with notes is OK.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Problem	Points	Score
1	4	
2	6	
3	10	
4	10	
5	10	
TOTAL	40	

Problem 1. (4 points) Classify the following second-order equations into elliptic, parabolic, or hyperbolic (c, v, D are constants).
(a) $\frac{1}{v} \frac{\partial u}{\partial t}(x, t)=D \frac{\partial^{2} u}{\partial x^{2}}(x, t)$,
(b) $\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t)$,
(c) $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) u(x, y)=0$.

Solution (a) parabolic, (b) hyperbolic, (c) elliptic.

Problem 2. (6 points) Consider the series below. Answer (a), (b), or (c).

$$
\sum_{n=10}^{\infty} \frac{1}{n^{2}}=0 . ? 05166 \ldots
$$

The number in the first decimal place is (a) 0 , (b) 1 , (c) 2 .

Solution We note that

$$
\int_{10}^{\infty} \frac{1}{x^{2}} d x \leq \sum_{n=10}^{\infty} \frac{1}{n^{2}} \leq \int_{10}^{\infty} \frac{1}{(x-1)^{2}} d x
$$

The integrals are calculated as

$$
\int_{10}^{\infty} \frac{1}{x^{2}} d x=\frac{1}{10}=0.1, \quad \int_{10}^{\infty} \frac{1}{(x-1)^{2}} d x=\int_{9}^{\infty} \frac{1}{y^{2}} d y=\frac{1}{9}=0.111 \ldots
$$

Therefore,

$$
0.1 \leq \sum_{n=10}^{\infty} \frac{1}{n^{2}} \leq 0.111 \ldots
$$

Hence \ddagger,

$$
?=1
$$

\ddagger Using Problem 5, we obtain

$$
\sum_{n=10}^{\infty} \frac{1}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}-1-\frac{1}{2^{2}}-\frac{1}{3^{2}}-\cdots-\frac{1}{9^{2}}=\frac{\pi^{2}}{6}-1-\frac{1}{4}-\frac{1}{9}-\cdots-\frac{1}{81}=0.105166 \ldots
$$

Problem 3. (10 points) Find the Fourier sine series for $f(x)=\cos x, 0<x<\pi$.

Solution We extend $f(x)$ to the interval $-\pi<x<\pi$ by defining

$$
f_{O}(x)= \begin{cases}\cos x & \text { for } 0<x<\pi \\ 0 & \text { for } x=0 \\ -\cos x & \text { for }-\pi<x<0\end{cases}
$$

We consider the Fourier series of this odd function f_{O} :

$$
f_{O}(x)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos (n x)+B_{n} \sin (n x)\right), \quad-\pi<x<\pi .
$$

Since $f_{O}(x)$ is odd, we have A_{0} and $A_{n}=0$. We obtain

$$
\begin{aligned}
B_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f_{O}(x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} \cos (x) \sin (n x) d x \\
& =\frac{1}{\pi} \int_{0}^{\pi}[\sin (n x+x)+\sin (n x-x)] d x
\end{aligned}
$$

If $n=1$, we have

$$
B_{1}=\frac{1}{\pi} \int_{0}^{\pi} \sin (2 x) d x=0
$$

For $n \geq 2$ we obtain

$$
B_{n}=\left.\frac{1}{\pi}\left[\frac{-\cos ((n+1) x)}{n+1}+\frac{-\cos ((n-1) x)}{n-1}\right]\right|_{0} ^{\pi}=\frac{2}{\pi} \frac{n\left[1+(-1)^{n}\right]}{n^{2}-1} .
$$

Therefore we obtain

$$
f_{O}(x)=\frac{2}{\pi} \sum_{n=2}^{\infty} \frac{n\left[1+(-1)^{n}\right]}{n^{2}-1} \sin (n x), \quad-\pi<x<\pi .
$$

The Fourier sine series is obtained as

$$
\begin{aligned}
\cos x & =\frac{2}{\pi} \sum_{n=2}^{\infty} \frac{n\left[1+(-1)^{n}\right]}{n^{2}-1} \sin (n x), \quad 0<x<\pi \\
& =\frac{8}{\pi} \sum_{m=1}^{\infty} \frac{m}{4 m^{2}-1} \sin (2 m x), \quad 0<x<\pi
\end{aligned}
$$

(continued)

Problem 4. (10 points) Find the separated solutions $u(x, t)$ of the heat equation $u_{t}-u_{x x}=0$ in the region $0<x<L, t>0$, that satisfy the boundary conditions $u_{x}(0, t)=u_{x}(L, t)=0$.

Solution We look for a separated solution $u(x, t)=X(x) T(t)$. We get

$$
\frac{T^{\prime}}{T}-\frac{X^{\prime \prime}}{X}=0
$$

By introducing the separation constant λ, we obtain§

$$
T^{\prime}(t)=\lambda T(t), \quad X^{\prime \prime}(x)=\lambda X(x)
$$

Thus, for three cases $\lambda>0, \lambda=0$, and $\lambda<0$, we have $\|$

$$
u(x, t)= \begin{cases}\left(A_{1} \cosh (k x)+A_{2} \sinh (k x)\right) e^{k^{2} t} & \text { for } \lambda=k^{2}, k>0 \\ A_{1} x+A_{2} & \text { for } \lambda=0 \\ \left(A_{1} \cos (l x)+A_{2} \sin (l x)\right) e^{-l^{2} t} & \text { for } \lambda=-l^{2}, l>0\end{cases}
$$

For $\lambda>0$, the boundary conditions imply $A_{1}=A_{2}=0$. Similarly for $\lambda=0$, we can conclude $A_{1}=0$. Only the case of $\lambda<0$ has nontrivial solutions. From the boundary conditions, we have $A_{2}=0$ and $\sin (l L)=0$. Hence $l L=n \pi(n=0, \pm 1, \pm 2, \ldots)$. Let C be a constant. We obtain

$$
u(x, t)=C \cos \frac{n \pi x}{L} e^{-(n \pi / L)^{2} t} \quad(n=0,1,2, \ldots)
$$

\S The introduction of λ is not unique. So, $T^{\prime}(t)=-\lambda T(t), X^{\prime \prime}(x)=-\lambda X(x)$, and $T^{\prime}(t)=2 \lambda T(t)$, $X^{\prime \prime}(x)=2 \lambda X(x)$, etc. are all fine. The final solution $u(x, t)$ will be the same.
$\|$ In the case of $\lambda>0$, we can also write $\left(A_{1} e^{k x}+A_{2} e^{-k x}\right) e^{k^{2} t}$. In the case of $\lambda<0$, we can also write $\left(A_{1} e^{i l x}+A_{2} e^{-i l x}\right) e^{-l^{2} t}$.
(continued)

Problem 5. (10 points) Find $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots$. (Hint: $f(x)=x,-\pi<x<\pi$.)

Solution Since x is an odd function, the Fourier series of x is written as

$$
x=\sum_{n=1}^{\infty} B_{n} \sin (n x) .
$$

Here,

$$
\begin{aligned}
B_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin (n x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x \sin (n x) d x \\
& =\frac{2}{\pi}\left[-\left.\frac{x}{n} \cos (n x)\right|_{0} ^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos (n x) d x\right] \\
& =\frac{2}{\pi}\left(-\frac{\pi}{n}\right) \cos (n \pi) \\
& =\frac{2}{n}(-1)^{n+1}
\end{aligned}
$$

According to Parseval's formula, we have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\frac{1}{2} \sum_{n=1}^{\infty} B_{n}^{2}
$$

The left-hand side is calculated as

$$
\mathrm{LHS}=\left.\frac{1}{2 \pi} \frac{x^{3}}{3}\right|_{-\pi} ^{\pi}=\frac{\pi^{2}}{3} .
$$

The right-hand side is calculated as

$$
\text { RHS }=\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{2}{n}(-1)^{n+1}\right)^{2}=2 \sum_{n=1}^{\infty} \frac{1}{n^{2}} .
$$

Therefore,

$$
1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

(continued)

$$
\begin{aligned}
& \cosh x=\frac{e^{x}+e^{-x}}{2}, \quad \sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& \cosh ^{2} x-\sinh ^{2} x=1, \quad \cosh (-x)=\cosh x, \quad \sinh (-x)=-\sinh x \\
& \cosh (2 x)=\cosh ^{2} x+\sinh ^{2} x, \quad \sinh (2 x)=2 \sinh x \cosh x, \quad \tanh (2 x)=\frac{2 \tanh x}{1+\tanh ^{2} x} \\
& \cosh ^{2} x=\frac{\cosh 2 x+1}{2}, \quad \sinh ^{2} x=\frac{\cosh 2 x-1}{2}, \quad 1-\tanh ^{2} x=\operatorname{sech}^{2} x=\frac{1}{\cosh ^{2} x} \\
& \frac{d \cosh x}{d x}=\sinh x, \quad \frac{d \sinh x}{d x}=\cosh x, \quad \frac{d \tanh x}{d x}=\operatorname{sech}^{2} x=\frac{1}{\cosh ^{2} x}
\end{aligned}
$$

$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
$\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$
$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
$\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$
$\cos A \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)]$
$\cosh (A \pm B)=\cosh A \cosh B \pm \sinh A \sinh B$
$\sinh (A \pm B)=\sinh A \cosh B \pm \cosh A \sinh B$
$\tanh (A \pm B)=\frac{\tanh A \pm \tanh B}{1 \pm \tanh A \tanh B}$
$\cosh A \cosh B=\frac{1}{2}[\cosh (A+B)+\cosh (A-B)]$
$\sinh A \sinh B=\frac{1}{2}[\cosh (A+B)-\cosh (A-B)]$
$\sinh A \cosh B=\frac{1}{2}[\sinh (A+B)+\sinh (A-B)]$
$\cosh A \sinh B=\frac{1}{2}[\sinh (A+B)-\sinh (A-B)]$

