MATH 454 SECTION 002
 FINAL

April 30, 2014, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- Formulae listed at the end can be used without proof.
- Theorems listed at the end can be used without proof.
- You can also use results from other problems, e.g., you can use Problem 1 when you solve Problem 2.
- Both sides of a US letter size paper $\left(8.5^{\prime \prime} \times 11^{\prime \prime}\right)$ with notes is OK.
- You can use the back side of a paper if you need. Indicate where your calculation jumps.
- NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
TOTAL	80	

Problem 1. (10 points) Write the general solution $u(\rho, \varphi)$ of Laplace's equation $\nabla^{2} u=0$ in the cylindrical region $1<\rho<2$. (Hint: if necessary, you can use the fact that $\Phi^{\prime \prime}(\varphi)+\mu \Phi(\varphi)=0, \Phi(-\pi)=\Phi(\pi), \Phi^{\prime}(-\pi)=\Phi^{\prime}(\pi)$ is solved as $\Phi(\varphi)=A \cos m \varphi+B \sin m \varphi$, $\left.\mu=m^{2}, m=0,1,2, \ldots.\right)$

Solution We solve

$$
\nabla^{2} u=u_{\rho \rho}+\frac{1}{\rho} u_{\rho}+\frac{1}{\rho^{2}} u_{\varphi \varphi}=0
$$

Assuming a solution of the form $u(\rho, \varphi)=R(\rho) \Phi(\varphi)$ and using the separation constant $\lambda=-\Phi^{\prime \prime} / \Phi$, we have
$\Phi^{\prime \prime}+\lambda \Phi=0, \quad \Phi(-\pi)=\Phi(\pi), \quad \Phi^{\prime}(-\pi)=\Phi^{\prime}(\pi), \quad R^{\prime \prime}+\frac{1}{\rho} R^{\prime}-\frac{\lambda}{\rho^{2}} R=0$.
We obtain $\Phi(\varphi)=A_{m} \cos m \varphi+B_{m} \sin m \varphi, \lambda=m^{2}, m=0,1,2, \ldots$. When $m=0$, two linearly independent solutions to $R^{\prime \prime}+(1 / \rho) R^{\prime}=0$ are $1, \ln \rho$. For $m \neq 0$, two solutions are found as $R(\rho)=\rho^{m}, \rho^{-m}$. Therefore the general solution is obtained as
$u(\rho, \varphi)=A_{0}+B_{0} \ln \rho+\sum_{m=1}^{\infty} \rho^{m}\left(A_{m} \cos m \varphi+B_{m} \sin m \varphi\right)+\sum_{m=1}^{\infty} \rho^{-m}\left(C_{m} \cos m \varphi+D_{m} \sin m \varphi\right)$,
where $A_{0}, B_{0}, A_{m}, B_{m}, C_{m}, D_{m}$ are constants.

Problem 2. (10 points) Consider a function $u(x, y, z)$. We want to use cylindrical coordinates ρ, φ, z instead of x, y, z. By using $\rho^{2}=x^{2}+y^{2}$ and $y=\rho \sin \varphi$, we obtain

$$
u_{x}=\mathrm{A} u_{\rho}-\mathrm{B} u_{\varphi} .
$$

Find A and B. In this way we obtain $\Delta u=u_{\rho \rho}+\frac{1}{\rho} u_{\rho}+\frac{1}{\rho^{2}} u_{\varphi \varphi}+u_{z z}$.

Solution We note that

$$
\begin{aligned}
\rho^{2}=x^{2}+y^{2} & \Rightarrow 2 \rho \frac{\partial \rho}{\partial x}=2 x, \quad 2 \rho \frac{\partial \rho}{\partial y}=2 y \\
& \Rightarrow \frac{\partial \rho}{\partial x}=\frac{x}{\rho}=\cos \varphi, \quad \frac{\partial \rho}{\partial y}=\frac{y}{\rho}=\sin \varphi,
\end{aligned}
$$

and

$$
\begin{aligned}
y=\rho \sin \varphi & \Rightarrow 0=\frac{\partial \rho}{\partial x} \sin \varphi+\rho \cos \varphi \frac{\partial \varphi}{\partial x}=\cos \varphi \sin \varphi+\rho \cos \varphi \frac{\partial \varphi}{\partial x} \\
& \Rightarrow \frac{\partial \varphi}{\partial x}=-\frac{\sin \varphi}{\rho} .
\end{aligned}
$$

We have

$$
u_{x}=\frac{\partial u}{\partial x}=\frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial x}+\frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial x}=\cos \varphi \frac{\partial u}{\partial \rho}-\frac{\sin \varphi}{\rho} \frac{\partial u}{\partial \varphi} .
$$

Therefore

$$
\mathrm{A}=\cos \varphi, \quad \mathrm{B}=\frac{\sin \varphi}{\rho} .
$$

Problem 3. (10 points) Find $u(x, t)$ for the heat equation

$$
\begin{cases}u_{t}=K u_{x x}, & t>0, \quad-\infty<x<\infty \\ u=e^{-x^{2}}, & t=0, \quad-\infty<x<\infty\end{cases}
$$

Solution The solution $u(x, t)$ is written as

$$
u(x, t)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{4 \pi K t}} e^{-\left(x-x^{\prime}\right)^{2} / 4 K t} e^{-x^{\prime 2}} d x^{\prime}
$$

We note that

$$
-\frac{\left(x-x^{\prime}\right)^{2}}{4 K t}-x^{\prime 2}=-\frac{4 K t+1}{4 K t}\left(x^{\prime}-\frac{x}{4 K t+1}\right)^{2}-\frac{x^{2}}{4 K t+1} .
$$

Therefore we have

$$
u(x, t)=\frac{1}{\sqrt{4 \pi K t}} e^{-x^{2} /(4 K t+1)} \int_{-\infty}^{\infty} \exp \left[-\frac{4 K t+1}{4 K t}\left(x^{\prime}-\frac{x}{4 K t+1}\right)^{2}\right] d x^{\prime}
$$

Using the Gaussian integral we obtain

$$
u(x, t)=\frac{1}{\sqrt{4 K t+1}} e^{-x^{2} /(4 K t+1)}
$$

(continued)

Problem 4. (10 points) Solve

$$
\begin{cases}t u_{t}+x u_{x}+u=0, & t>1, \\ u=x, & t=1, \quad-\infty<x<\infty \\ u=\infty\end{cases}
$$

Solution Let us introduce s and τ. We have

$$
\begin{cases}\frac{d t}{d s}=t, & s>0 \\ t=1, & s=0\end{cases}
$$

and

$$
\begin{cases}\frac{d x}{d s}=x, & s>0 \\ x=\tau, & s=0\end{cases}
$$

By solving the equations we obtain

$$
t=e^{s}, \quad x=\tau e^{s}
$$

We note that

$$
\frac{d u}{d s}=\frac{\partial u}{\partial t} \frac{d t}{d s}+\frac{\partial u}{\partial x} \frac{d x}{d s}=t u_{t}+x u_{x}=-u
$$

Therefore we have

$$
\begin{cases}\frac{d u}{d s}+u=0, & s>0 \\ u=\tau, & s=0\end{cases}
$$

We obtain

$$
u=e^{-s} \tau
$$

Since

$$
s=\ln t, \quad \tau=\frac{x}{t}
$$

finally we obtain

$$
u(x, t)=\frac{1}{t} \frac{x}{t}=\frac{x}{t^{2}}
$$

Problem 5. (10 points) Let us consider the vibrating (circular) membrane problem (i.e., the edges are fixed) in the case where the radius is a and $u(\rho, \varphi, 0)=0$. The general solution to $u_{t t}=c^{2} \nabla^{2} u$ is written as

$$
u(\rho, \varphi, t)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\frac{\rho x_{n}^{(m)}}{a}\right)\left(A_{m n} \cos m \varphi+B_{m n} \sin m \varphi\right) \sin \frac{c t x_{n}^{(m)}}{a}
$$

where $J_{m}\left(x_{n}^{(m)}\right)=0, x_{n}^{(m)}>0$, and $A_{m n}, B_{m n}$ are constants. Find the solution $u(\rho, \varphi, t)$ when $u_{t}(\rho, \varphi, 0)=J_{5}\left(\rho x_{1}^{(5)} / a\right) \sin (5 \varphi), 0<\rho<a$.

Solution We introduce $x=\rho / a$. To satisfy the condition $u_{t}(\rho, \varphi, 0)=J_{5}\left(x x_{1}^{(5)}\right) \sin (5 \varphi)$, $A_{m n}, B_{m n}$ must satisfy

$$
J_{5}\left(x x_{1}^{(5)}\right) \sin (5 \varphi)=\sum_{m^{\prime}=0}^{\infty} \sum_{n^{\prime}=1}^{\infty} \frac{c x_{n^{\prime}}^{\left(m^{\prime}\right)}}{a} J_{m^{\prime}}\left(x x_{n^{\prime}}^{\left(m^{\prime}\right)}\right)\left(A_{m^{\prime} n^{\prime}} \cos m^{\prime} \varphi+B_{m^{\prime} n^{\prime}} \sin m^{\prime} \varphi\right)
$$

If we multiply $\sin m \varphi, m=1,2, \ldots$, and integrate on both sides over φ, we obtain

$$
\begin{equation*}
J_{5}\left(x x_{1}^{(5)}\right) \pi \delta_{m 5}=\pi \sum_{n^{\prime}=1}^{\infty} \frac{c x_{n^{\prime}}^{(m)}}{a} J_{m}\left(x x_{n^{\prime}}^{(m)}\right) B_{m n^{\prime}} \tag{1}
\end{equation*}
$$

where we used the orthogonality relations. Similarly by multiplying $\cos m \varphi, m=0,1,2, \ldots$, we obtain

$$
\begin{equation*}
0=\pi \sum_{n^{\prime}=1}^{\infty} \frac{c x_{n^{\prime}}^{(m)}}{a} J_{m}\left(x x_{n^{\prime}}^{(m)}\right) A_{m n^{\prime}} \tag{2}
\end{equation*}
$$

We then multiply (1) and (2) by $J_{m}\left(x x_{n}^{(m)}\right) x$ and integrate over x. Using the orthogonality relations we have

$$
\frac{1}{2} J_{6}\left(x_{1}^{(5)}\right)^{2} \delta_{m 5} \delta_{n 1}=\frac{c x_{n}^{(m)}}{a} \frac{1}{2} J_{m+1}\left(x_{n}^{(m)}\right)^{2} B_{m n}, \quad 0=\frac{c x_{n}^{(m)}}{a} \frac{1}{2} J_{m+1}\left(x_{n}^{(m)}\right)^{2} A_{m n}
$$

Hence $A_{m n}=B_{m n}=0$ except $B_{51}=a /\left(c x_{1}^{(5)}\right)$. Finally we obtain

$$
u(\rho, \varphi, t)=\frac{a}{c x_{1}^{(5)}} J_{5}\left(\frac{\rho x_{1}^{(5)}}{a}\right) \sin 5 \varphi \sin \frac{c t x_{1}^{(5)}}{a} .
$$

(continued)

Problem 6. (10 points) Let $\left\{x_{n}\right\}$ be the nonnegative solutions to $J_{m}\left(x_{n}\right)=0$, where $m \geq 0$.
We have

$$
\int_{0}^{1} J_{m}\left(x x_{n_{1}}\right) J_{m}\left(x x_{n_{2}}\right) x d x=\frac{1}{2} J_{m+1}\left(x_{n_{1}}\right)^{2} \delta_{n_{1} n_{2}} .
$$

Let us show that the right-hand side is 0 when $n_{1} \neq n_{2}$. The proof is shown below. What are A, B, and C ?
Step 1 We note that $\frac{d^{2} J_{m}(x)}{d x^{2}}+\frac{1}{x} \frac{d J_{m}(x)}{d x}+\left(1-\frac{m^{2}}{x^{2}}\right) J_{m}(x)=0$. Hence,

$$
\begin{align*}
& \frac{d}{d x}\left(x \frac{d y_{1}(x)}{d x}\right)+\left(x x_{n_{1}}^{2}-\frac{m^{2}}{x}\right) y_{1}(x)=0 \tag{3}\\
& \frac{d}{d x}\left(x \frac{d y_{2}(x)}{d x}\right)+\left(x x_{n_{2}}^{2}-\frac{m^{2}}{x}\right) y_{2}(x)=0 \tag{4}
\end{align*}
$$

where $y_{i}(x)=J_{m}\left(x x_{n_{i}}\right)(i=1,2)$.
Step 2 We multiply (3) by A and multiply (4) by B, and integrate both sides over x.
Step 3 By subtracting the resulting equations we obtain

$$
\left.\left(y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}\right)\right|_{x=1}+\mathrm{C} \int_{0}^{1} x y_{1}(x) y_{2}(x) d x=0
$$

The first term vanishes due to the boundary conditions. Since $n_{1} \neq n_{2}$, thus, the orthogonality relations are proved.

Solution

$$
\mathrm{A}=y_{2}(x), \quad \boxed{\mathrm{B}}=y_{1}(x), \quad \mathrm{C}=x_{n_{1}}^{2}-x_{n_{2}}^{2} .
$$

Problem 7. (10 points) Let $f(s)=0$ for $-1<s<\frac{1}{2}$ and $f(s)=1$ for $\frac{1}{2}<s<1$. Find the expansion of $f(s)$ in a series of Legendre polynomials. (Hint: $\int_{-1}^{1} P_{k}(s) P_{j}(s) d s=\frac{2}{2 k+1} \delta_{k j}$.)

Solution We write

$$
f(s)=\sum_{k=0}^{\infty} A_{k} P_{k}(s), \quad-1<s<1
$$

where A_{k} are constants to be determined. We multiply $P_{j}(s)$ and integrate over s :

$$
\int_{-1}^{1} f(s) P_{j}(s) d s=\sum_{k=0}^{\infty} A_{k} \int_{-1}^{1} P_{k}(s) P_{j}(s) d s
$$

The left-hand side is obtained as follows. For $j=0$, we have

$$
\mathrm{LHS}=\int_{1 / 2}^{1} P_{0}(s) d s=\int_{1 / 2}^{1} d s=\frac{1}{2} .
$$

For $j \geq 1$, we have

$$
\begin{aligned}
\text { LHS } & =\int_{1 / 2}^{1} P_{j}(s) d s=\int_{1 / 2}^{1} \frac{-1}{j(j+1)} \frac{d}{d s}\left[\left(1-s^{2}\right) \frac{d}{d s} P_{j}(s)\right] d s \\
& =\left.\frac{-1}{j(j+1)}\left(1-s^{2}\right) \frac{d}{d s} P_{j}(s)\right|_{1 / 2} ^{1}=\frac{1}{j(j+1)} \frac{3}{4} \frac{d P_{j}}{d s}\left(\frac{1}{2}\right) .
\end{aligned}
$$

The right-hand side is obtained as

$$
\text { RHS }=\sum_{k=0}^{\infty} A_{k} \int_{-1}^{1} P_{k}(s) P_{j}(s) d s=\sum_{k=0}^{\infty} A_{k} \frac{2}{2 k+1} \delta_{k j}=\frac{2 A_{j}}{2 j+1} .
$$

Therefore we obtain

$$
A_{0}=\frac{1}{4}, \quad A_{j}=\frac{3(2 j+1)}{8 j(j+1)} P_{j}^{\prime}\left(\frac{1}{2}\right) \quad(j \geq 1)
$$

That is,

$$
f(s)=\frac{1}{4}+\frac{3}{8} \sum_{k=1}^{\infty} \frac{2 k+1}{k(k+1)} P_{k}^{\prime}\left(\frac{1}{2}\right) P_{k}(s), \quad-1<s<1 .
$$

Problem 8. (10 points) Find $u(x, t)$.

$$
\begin{cases}u_{t}=K u_{x x}, & t>0,0<x<L, \\ u=0, & t>0, x=0, L, \\ u=\delta(x-1), & t=0,0<x<L .\end{cases}
$$

Solution By assuming the form $u(x, t)=\phi(x) T(t)$ and introducing the separation constant $\lambda=-\phi^{\prime \prime} / \phi$, we have

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \phi(0)=\phi(L)=0, \quad T^{\prime}+\lambda K T=0 .
$$

We obtain

$$
\phi(x)=\phi_{n}(x)=\sin \frac{n \pi x}{L}, \quad \lambda=\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad n=1,2, \ldots, \quad T(t)=e^{-\lambda K t} .
$$

Note that

$$
\int_{0}^{L} \phi_{n}(x) \phi_{m}(x) d x=\frac{L}{2} \delta_{n m} .
$$

Thus the general solution is given by

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \phi_{n}(x) e^{-\lambda_{n} K t} .
$$

The initial condition is written as

$$
\delta(x-1)=\sum_{n=1}^{\infty} A_{n} \phi_{n}(x) .
$$

If $L<1$, then we have $A_{n}=0$ and $u(x, t)=0$. Hereafter we assume $L>1$. We multiply $\phi_{m}(x)$ on both sides and integrate over x.

$$
\int_{0}^{L} \delta(x-1) \phi_{m}(x) d x=\int_{0}^{L} \sum_{n=1}^{\infty} A_{n} \phi_{n}(x) \phi_{m}(x) d x
$$

We obtain $\phi_{m}(1)=A_{m} \frac{L}{2}$, and

$$
A_{m}=\frac{2}{L} \phi_{m}(1) .
$$

Therefore we obtain

$$
u(x, t)=\frac{2}{L} \sum_{n=1}^{\infty} \sin \frac{n \pi}{L} \sin \frac{n \pi x}{L} e^{-(n \pi / L)^{2} K t} .
$$

(continued)

Alternative Solution Let us extend $\delta(x-1)$ as an odd $2 L$-periodic function by setting

$$
f_{O}(x)= \begin{cases}\delta(x-2 m L-1), & 2 m L<x<(2 m+1) L \\ 0, & x=2 m L, \quad(2 m+1) L, \quad(2 m+2) L \\ -\delta(-x+(2 m+2) L-1), & (2 m+1) L<x<(2 m+2) L\end{cases}
$$

where $m=0, \pm 1, \pm 2, \ldots$. Note that $f_{O}(x+2 L)=f_{O}(x)$ for all x. Then we have

$$
u(x, t)=\int_{-\infty}^{\infty} G\left(x, x^{\prime} ; t\right) f_{O}\left(x^{\prime}\right) d x^{\prime}=\sum_{m=-\infty}^{\infty}\left\{\int_{2 m L}^{(2 m+1) L}+\int_{(2 m+1) L}^{(2 m+2) L}\right\} G\left(x, x^{\prime} ; t\right) f_{O}\left(x^{\prime}\right) d x^{\prime}
$$

We obtain

$$
u(x, t)=\int_{0}^{L} G_{L}\left(x, x^{\prime} ; t\right) \delta\left(x^{\prime}-1\right) d x^{\prime}
$$

where

$$
G_{L}\left(x, x^{\prime} ; t\right)=\sum_{m=-\infty}^{\infty}\left[G\left(x, x^{\prime}+2 m L ; t\right)-G\left(x,-x^{\prime}+(2 m+2) L ; t\right)\right],
$$

and

$$
G\left(x, x^{\prime} ; t\right)=\frac{1}{\sqrt{4 \pi K t}} e^{-\left(x-x^{\prime}\right)^{2} / 4 K t}
$$

If $L<1$, then we have $u(x, t)=0$. If $L>1$, we obtain

$$
\begin{aligned}
u(x, t) & =G_{L}(x, 1 ; t) \\
& =\frac{1}{\sqrt{4 \pi K t}} \sum_{m=-\infty}^{\infty}\left[e^{-(x-2 m L-1)^{2} / 4 K t}-e^{-(x-(2 m+2) L+1)^{2} / 4 K t}\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \cosh x=\frac{e^{x}+e^{-x}}{2}, \quad \sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& \cosh ^{2} x-\sinh ^{2} x=1, \quad \cosh (-x)=\cosh x, \quad \sinh (-x)=-\sinh x \\
& \cosh (2 x)=\cosh ^{2} x+\sinh ^{2} x, \quad \sinh (2 x)=2 \sinh x \cosh x, \quad \tanh (2 x)=\frac{2 \tanh x}{1+\tanh ^{2} x} \\
& \cosh ^{2} x=\frac{\cosh 2 x+1}{2}, \quad \sinh ^{2} x=\frac{\cosh 2 x-1}{2}, \quad 1-\tanh ^{2} x=\operatorname{sech}^{2} x=\frac{1}{\cosh ^{2} x} \\
& \frac{d \cosh x}{d x}=\sinh x, \quad \frac{d \sinh x}{d x}=\cosh x, \quad \frac{d \tanh x}{d x}=\operatorname{sech}^{2} x=\frac{1}{\cosh ^{2} x}
\end{aligned}
$$

$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
$\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$
$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
$\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$
$\cos A \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)]$
$\cosh (A \pm B)=\cosh A \cosh B \pm \sinh A \sinh B$
$\sinh (A \pm B)=\sinh A \cosh B \pm \cosh A \sinh B$
$\tanh (A \pm B)=\frac{\tanh A \pm \tanh B}{1 \pm \tanh A \tanh B}$
$\cosh A \cosh B=\frac{1}{2}[\cosh (A+B)+\cosh (A-B)]$
$\sinh A \sinh B=\frac{1}{2}[\cosh (A+B)-\cosh (A-B)]$
$\sinh A \cosh B=\frac{1}{2}[\sinh (A+B)+\sinh (A-B)]$
$\cosh A \sinh B=\frac{1}{2}[\sinh (A+B)-\sinh (A-B)]$

Theorems

Theorem 1. For $m, n=1,2, \cdots$, we have

$$
\begin{aligned}
& \int_{-L}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x=L \delta_{n m}, \\
& \int_{-L}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=L \delta_{n m}, \\
& \int_{-L}^{L} \sin \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x=0 .
\end{aligned}
$$

Theorem 2. For $m, n=1,2, \cdots$, we have

$$
\begin{aligned}
& \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x=\frac{L}{2} \delta_{n m} \\
& \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\frac{L}{2} \delta_{n m}, \\
& \int_{0}^{L} \sin \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x= \begin{cases}\frac{2 L n}{\pi\left(n^{2}-m^{2}\right)} & \text { for odd } n+m \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem 3. Consider the Sturm-Liouville problem

$$
\left[s(x) \phi^{\prime}(x)\right]^{\prime}+[\lambda \rho(x)-q(x)] \phi(x)=0, \quad a<x<b,
$$

where $\rho(x)>0$, with the boundary conditions

$$
\phi(a) \cos \alpha-L \phi^{\prime}(a) \sin \alpha=0, \quad \phi(b) \cos \beta+L \phi^{\prime}(b) \sin \beta=0,
$$

where $L=b-a$, and $\alpha, \beta \in[0, \pi)$ are some parameters. Suppose that $\phi_{1}(x), \phi_{2}(x)$ are nontrivial solutions with different eigenvalues $\lambda_{1} \neq \lambda_{2}$. Then the eigenfunctions are orthogonal with respect to the weight function $\rho(x), a<x<b$:

$$
\int_{a}^{b} \phi_{1}(x) \phi_{2}(x) \rho(x) d x=0
$$

Theorem 4. For $m, n=1,2, \cdots$, we have

$$
\int_{0}^{L_{2}} \int_{0}^{L_{1}} \sin \frac{m \pi x}{L_{1}} \sin \frac{n \pi y}{L_{2}} \sin \frac{m^{\prime} \pi x}{L_{1}} \sin \frac{n^{\prime} \pi y}{L_{2}} d x d y=\frac{L_{1} L_{2}}{4} \delta_{m m^{\prime}} \delta_{n n^{\prime}}
$$

Cylindrical and spherical coordinates

$$
\begin{aligned}
& x=\rho \cos \varphi, \quad y=\rho \sin \varphi, \quad z=z, \\
& x=r \sin \theta \cos \varphi, \quad y=r \sin \theta \sin \varphi, \quad z=r \cos \theta .
\end{aligned}
$$

Bessel's equation

$$
J_{m}^{\prime \prime}(x)+\frac{1}{x} J_{m}^{\prime}(x)+\left(1-\frac{m^{2}}{x^{2}}\right) J_{m}(x)=0 .
$$

The Legendre equation

$$
\left[\left(1-s^{2}\right) P_{k}^{\prime}(s)\right]^{\prime}+k(k+1) P_{k}(s)=0 .
$$

Fourier transform

$$
f(x)=\int_{-\infty}^{\infty} \tilde{f}(\mu) e^{i \mu x} d \mu, \quad \tilde{f}(\mu)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i \mu x} d x
$$

Gaussian integral

$$
\int_{-\infty}^{\infty} e^{-a(x-b)^{2}} d x=\sqrt{\frac{\pi}{a}}, \quad a>0
$$

Green's functions

The solution to

$$
\left\{\begin{array}{lll}
u_{t}-K u_{x x}=h(x, t), & t>0, & -\infty<x<\infty \\
u=f(x), & t=0, & -\infty<x<\infty
\end{array}\right.
$$

is given by

$$
u(x, t)=\int_{-\infty}^{\infty} G\left(x, x^{\prime} ; t\right) f\left(x^{\prime}\right) d x^{\prime}+\int_{0}^{t} \int_{-\infty}^{\infty} G\left(x, x^{\prime} ; t-s\right) h\left(x^{\prime}, s\right) d x^{\prime} d s
$$

where

$$
G\left(x, x^{\prime} ; t\right)=\frac{1}{\sqrt{4 \pi K t}} e^{-\left(x-x^{\prime}\right)^{2} /(4 K t)} .
$$

