MATH 454 SECTION 002

FINAL
April 30, 2014, Instructor: Manabu Machida

Name:

To receive full credit you must show all your work.
Formulae listed at the end can be used without proof.
Theorems listed at the end can be used without proof.

You can also use results from other problems, e.g., you can use Problem 1 when you
solve Problem 2.

Both sides of a US letter size paper (8.5" X 11") with notes is OK.
You can use the back side of a paper if you need. Indicate where your calculation jumps.
NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Problem | Points | Score
1 10
2 10
3 10
4 10
5 10
6 10
7 10
8 10
TOTAL | &0




Problem 1. (10 points) Write the general solution u(p, @) of Laplace’s equation V*u = 0
in the cylindrical region 1 < p < 2. (Hint: if necessary, you can use the fact that
D" (p)+u®(p) =0, ®(—7) = ®(7), '(—m) = ®'() is solved as ®(¢) = A cos mp+ B sin m,
p=m? m=0,1,2,....)

Solution We solve
2 _ _
Vou = u,, + ;up + _pQUW = 0.

Assuming a solution of the form u(p,p) = R(p)®(¢) and using the separation constant
A= —d" /D, we have

1 A
"+ AP =0, P(—7)=(n), P(—7)=P(nm), R'+-R — —SR=0.

pp
We obtain ®(p) = A, cosmp + B, sinmp, A = m? m = 0,1,2,.... When m = 0, two
linearly independent solutions to R” + (1/p)R’ = 0 are 1,In p. For m # 0, two solutions are
found as R(p) = p™, p~™. Therefore the general solution is obtained as

u(p,p) = Ag+ Bolnp + Z p" (A, cosmp + By, sinme) + Z p "(Cpcosmp + Dy, sinmy),

m=1 m=1

where Ay, By, A, B, Cony D, are constants.



Problem 2. (10 points) Consider a function u(z,y,z). We want to use cylindrical
coordinates p, o, z instead of x,y, 2. By using p? = 22 + y? and y = psin ¢, we obtain

g =[ A, —[Blug.

Find and . In this way we obtain Au = u,, + %up + iuw + Uy,

o2

Solution We note that

0 0
pP=2+y = Qpa—p:2$, Zpa—p:2y
Z Y
0 0
= a—g:;zcosgo, a—gz%zsingo,
and
0 0 0
y=psing = Oza—psinga—i-pcosgpa—w:cosgosingo—kpcoscpa—@
x x x
9 .
., Op _ _sinp
Ox p
We have
0 ou 0 ou 0 0 inpd
ux:_u:_u_p_i__u_(pzcosgo_u_snlgp_u.
Or Opdxr Oy Or op p Oy
Therefore

[A]=cosg,  [B]= 22

p



Problem 3. (10 points) Find u(x,t) for the heat equation
{ut:Kum, t>0, —oo<uz<o00,

u=-e ", t=0, —oo<z<o0.

Solution The solution u(x,t) is written as

& 1 / !
u(;p’t) = / \/ﬁe—(l‘—x )2/4Kt6_x2dl'/-

We note that

4Kt 4Kt

Therefore we have

(x —a')? 2 AKt+1 [ x 2 x?
4Kt +1 4Kt +1

1 2 & 4Kt + 1
wlot) = e D [ e [‘4—5 (¢~ s

Using the Gaussian integral we obtain

1
e—xZ/(4Kt+1)

VAKTE + 1 '

u(z,t) =

X

;

/

dz’.



(continued)



Problem 4. (10 points) Solve

{tut%—mum—l—u:O, t>1, —oco<z<o0,

U=z, t=1, —oco<z<o0.

Solution Let us introduce s and 7. We have

dt

— =t >0
ds ) 8 )
t=1, s =0,

and

dx

- = 4, >07
7 T s
=T, s =0,

By solving the equations we obtain

t=¢e’ T = Te’.
)

We note that
du B oudt Oudx

— = ——+ —— =tu + ru, = —u.
ds Ot ds + Oz ds et
Therefore we have
d
a +u =0, s> 0,
ds
u=r, s =0.
We obtain
u=e"°r
Since
T
s =Int, T=—,
t
finally we obtain
lz T
t) = —— = —.
u(z,t) TP



Problem 5. (10 points) Let us consider the vibrating (circular) membrane problem (i.e.,
the edges are fixed) in the case where the radius is a and u(p, ¢,0) = 0. The general solution
to uy = ¢>V>2u is written as

(m)
n . . t n
u(p, p,t) ZZJ (pac ) (Apn cos mp + By, sinmep) sin ¢ a; ,

m=0 n=1

where Jm(x%m)) =0, zim > 0, and A,.,, Bnn are constants. Find the solution u(p, ¢,t)
when w(p, ¢,0) = Js(pz{” /a) sin(5¢), 0 < p < a.

Solution We introduce = = p/a. To satisfy the condition w(p, ¢,0) = J5(x:v§5)) sin(5¢p),
Avpns B must satisfy

l

J5 (xa:l sin(5p) = Z Z CI T :m: o /)) (A cosm’ o + By sSinm/ )

m/'=0n'=1

If we multiply sinme, m =1,2,..., and integrate on both sides over ¢, we obtain

Js (a:xl VO = T Z

CZL‘,

(22" By, (1)

where we used the orthogonality relatlons. Similarly by multiplying cosmy, m =0,1,2,..

*9

we obtain
00 (m)
Cl"n, (m)
0= ——Jn ) A - 2
T ngﬂ . (xz,,”) (2)

We then multiply (1) and (2) by J,, (a:.tz:n ))x and integrate over x. Using the orthogonality
relations we have

1 5 cxi™ 1 m cai™ 1 m
éjﬁ(xg ))2577155711 - a 2 m+1(x£L )>Qan7 0= a 5 m+1(x£L ))2Amn

Hence A, = By = 0 except Bs; = a/ (cxgg’)). Finally we obtain

a pr) ct:vgs)
u(p, o, t) = (5)J5 sin 5 sin —

a
cry




(continued)



Problem 6. (10 points) Let {z,} be the nonnegative solutions to J,,(z,) = 0, where m > 0.
We have

1
1
/ I (20, ) I (T, ) d = 3 m+1(xm)2(5nm2.
0

Let us show that the right-hand side is 0 when n; # ns. The proof is shown below. What
are , , and ?

Step 1 We note that de;”g(x) + %d‘]zl”(x) + (1 — ﬂ;) Jm(x) = 0. Hence,

X T

iz (52 (= =0 §

d <xg@452>-+ (xxi-—zgi)gn(x)_.o, (4)

dx dx
where y;(x) = J(xxy,) (i = 1,2).
Step 2 We multiply (3) by and multiply (4) by , and integrate both sides over x.
Step 3 By subtracting the resulting equations we obtain

1
A [ @i =o
0

The first term vanishes due to the boundary conditions. Since ny # ns, thus, the

orthogonality relations are proved.

(%m—w%m

Solution



Problem 7. (10 points) Let f(s) =0for =1 < s < 1 and f(s) =1 for 1 < s < 1. Find the
expansion of f(s) in a series of Legendre polynomials. (Hint: f_ll Py(s)P;(s)ds = 2k+15k3 )

Solution We write

s) = ZAkPk(s), -1<s<1,

where Ay are constants to be determined. We multiply P;(s) and integrate over s:

/f ds_ZAk/ Py (s)P;(s)ds.

The left-hand side is obtained as follows. For j = 0, we have

1 1 1
LHS = / Py(s)ds = / ds = —.
1/2 1/2 2

For j > 1, we have

LHS — /1/121%<s>ds: //12](_1 G A= H5Re) d

-1 d ! 1 3dP: 1
= (1 -5*)—Pi(s = — ——2(2).
i +1) ( )3 5) e JUF+1) 4 ds %)

The right-hand side is obtained as

> 1 > 2 24
RHS Zk:o ’“/_1 b(5)F;(s)ds Zk:o IO T 5
Therefore we obtain
1 3(2j +1) 1 ,
Ay = = A =22 T pr( 2 > 1).
T TG (2) =
That is,
3 — 2k+1 1
_ 2.9 -\p -1 1.
4+82k< (2) (5). <8<

k=1



Problem 8. (10 points) Find u(x,t).
U = Ktgy, t>0,0<z<L,
u =0, t>0,=0,0L,
u=29(z—1), t=0,0<xz<L.

Solution By assuming the form u(x,t) = ¢(z)T'(t) and introducing the separation constant
A= —¢"/p, we have

"+ Xp=0, ¢(0)=¢(L)=0, T + \KT = 0.
We obtain
2
¢(x) = ¢n(x) = sin @7 A= /\n - (E> ; n = 17 2, ey T(t) == €_>\Kt.

Note that

L L
/ On ()P (x)dx = E(Snm.
0

Thus the general solution is given by
u(z,t) = f: Ap(x)e KL
n=1
The initial condition is written as
S —1)=> Ann(x).
n=1

If L <1, then we have A, = 0 and u(x,t) = 0. Hereafter we assume L > 1. We multiply
¢m(z) on both sides and integrate over x.

/OL 6(z = 1)ppm(z)dr = /OL ni; A () () dz.

We obtain ¢,,(1) = A, %, and

2
261
Therefore we obtain
2 & ,
u(x,t) = E E sin% sin n_zxe—(mr/L) Kt.



(continued)

Alternative Solution Let us extend d(x — 1) as an odd 2L-periodic function by setting
d(z —2mL — 1), 2mL < x < (2m+ 1)L,
fo(x) =< 0, x=2mL, (2m+1)L, (2m+2)L,
—0(—z+ (2m+2)L — 1), 2m+1)L <z < (2m+2)L,
where m = 0,41, £2,.... Note that fo(z + 2L) = fo(x) for all z. Then we have

00 0 (2m+1)L (2m+2)L
u(z,t) :/ G(x,2';t) fo(a')dx' = Z {/2 +/( }G(x,x';t)fo(a:’)dx'.

00 mL 2m+1)L

m=—0oQ

We obtain

L
u(x,t) = / Gz, 2';6)0(x" — 1)da/,
0

where

Grle,at) = i (G, o’ +2mL;t) = Gz, —a' + (2m + 2) L; 1)],
and m:—oo

G(z,2';t) = \/;T_Kte(zx’)”%_

If L <1, then we have u(z,t) = 0. If L > 1, we obtain

= —(z=2mL-1)?/4Kt _ ,—(z—(2m+2)L+1)*/AKt
= e e '
4 Kt Z [

m=—00

—_




Formulae

coshx:i, sinhx = l, tanhx:l
2 2 et 4+ e *
cosh®z —sinh®2 =1, cosh(—x) = coshz, sinh(—x) = —sinhx
2 12 . . 2tanh x
cosh(2z) = cosh” x + sinh”x, sinh(2x) = 2sinhz coshz, tanh(2z) = ———
1+ tanh® x
h2 1 h2xr —1 1
cosh2x:M, sin 2:10:M, 1—tanh2a::sech2x:—2
2 2 cosh” z
d cosh d sinh d tanh 1
COSAT _ sinh x, ST cosh z, AT _ sech?z = 5
dx dx T cosh” x

cos(A + B) = cos Acos B F sin Asin B
sin(A + B) = sin A cos B 4 cos Asin B
tan A & tan B
1F tan Atan B

tan(A £ B) =

1
cos Acos B = 5 [cos(A — B) + cos(A + B)]
1

sin Asin B = 5 [cos(A — B) — cos(A + B)]
sin Acos B = % [sin(A + B) +sin(A — B)]
cos Asin B = % [sin(A + B) — sin(A — B)]

cosh(A + B) = cosh A cosh B + sinh Asinh B

sinh(A + B) = sinh A cosh B =+ cosh Asinh B
tanh A &+ tanh B
1 &+ tanh Atanh B

tanh(A £+ B) =

cosh A cosh B = = [cosh(A + B) + cosh(A — B)]

— DN =

sinh Asinh B = = [cosh(A + B) — cosh(A — B)]

— DN

sinh A cosh B = — [sinh(A + B) + sinh(A — B)]

— DN

cosh Asinh B = 5 [sinh(A + B) — sinh(A — B)]



Theorems

Theorem 1. For m,n =1,2,---, we have
L
/ cos nr cos mre dx = Loy,
L L L
L
/ sin nE sin mre dx = Lo,
_I L
L nmwx mmnx
/ sin —— cos dr = 0.
_I L L
Theorem 2. For m,n=1,2,---, we have
L
L
/ cos nre cos mre dr = —dpm,
0 L L 2
L
L
/ sin nr sin mre dx Onms
0 L L 2
2L
L NnTT MTT % fOI' odd n + m,
/ sin —— cos dr = { ™(n*—m?)
0 L L .
otherwise.

Theorem 3. Consider the Sturm-Liouville problem
[s(x) ()" + [Ap(x) — q(@)]é(x) =0, a <z <b,
where p(z) > 0, with the boundary conditions
d(a)cosa — Lo (a)sina =0,  ¢(b) cos 8+ L' (b) sin § = 0,

where L = b — a, and o, € [0,7) are some parameters. Suppose that ¢;(x), po(x)
are nontrivial solutions with different eigenvalues A\; # Ay. Then the eigenfunctions are
orthogonal with respect to the weight function p(x), a < z < b:

/ 1 (2) s () ()l = 0.

Theorem 4. For m,n =1,2,---, we have

/L2 /Ll . mmr . nwy . m'rr n’wyd p L1L25 5
sin sin sin sin xdy = ! O
o Jo L L, L L, YTy




Cylindrical and spherical coordinates

T = pCcosp, Yy = psin g, z =z,

x = rsinf cos g, y = rsinfsin @, z =rcosf.

Bessel’s equation
1" 1 !
Jo(x)+=J () + <1 — —) I () = 0.
x

The Legendre equation

(1= ") Pi(s)] + k(k + 1) Pe(s) = 0.
Fourier transform

f@) = [ Fwerdn, = o [ s@e s

Gaussian integral

/ e~ @0 gy = \/E, a > 0.
oo a

Green’s functions

The solution to

u — Kug, = h(z,t), t>0, —oo<uzx<o0,
u= f(x), t=0, —oo<uzx<o0,
is given by
00 t 00
u(x,t) = / G(x,2';t) f(«')da' +/ / G(z,2';t — s)h(a!, s)dx' ds,
— 00 0 J—-oo
where

1 N2
G(z,2';t) = e~ (#—a)*/(4K)
VAT Kt




