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• To receive full credit you must show all your work.

• Formulae listed at the end can be used without proof.

• Theorems listed at the end can be used without proof.

• You can also use results from other problems, e.g., you can use Problem 1 when you

solve Problem 2.

• Both sides of a US letter size paper (8.5" × 11") with notes is OK.

• You can use the back side of a paper if you need. Indicate where your calculation jumps.

• NO CALCULATOR, SMARTPHONE, BOOKS, or OTHER NOTES.

Problem Points Score

1 10

2 10

3 10

4 10

5 10

6 10

7 10

8 10

TOTAL 80



Problem 1. (10 points) Write the general solution u(ρ, ϕ) of Laplace’s equation ∇2u = 0

in the cylindrical region 1 < ρ < 2. (Hint: if necessary, you can use the fact that

Φ′′(ϕ)+µΦ(ϕ) = 0, Φ(−π) = Φ(π), Φ′(−π) = Φ′(π) is solved as Φ(ϕ) = A cosmϕ+B sinmϕ,

µ = m2, m = 0, 1, 2, . . ..)

Solution We solve

∇2u = uρρ +
1

ρ
uρ +

1

ρ2
uϕϕ = 0.

Assuming a solution of the form u(ρ, ϕ) = R(ρ)Φ(ϕ) and using the separation constant

λ = −Φ′′/Φ, we have

Φ′′ + λΦ = 0, Φ(−π) = Φ(π), Φ′(−π) = Φ′(π), R′′ +
1

ρ
R′ − λ

ρ2
R = 0.

We obtain Φ(ϕ) = Am cosmϕ + Bm sinmϕ, λ = m2, m = 0, 1, 2, . . .. When m = 0, two

linearly independent solutions to R′′ + (1/ρ)R′ = 0 are 1, ln ρ. For m 6= 0, two solutions are

found as R(ρ) = ρm, ρ−m. Therefore the general solution is obtained as

u(ρ, ϕ) = A0 + B0 ln ρ+
∞
∑

m=1

ρm(Am cosmϕ+ Bm sinmϕ) +
∞
∑

m=1

ρ−m(Cm cosmϕ+Dm sinmϕ),

where A0, B0, Am, Bm, Cm, Dm are constants.



Problem 2. (10 points) Consider a function u(x, y, z). We want to use cylindrical

coordinates ρ, ϕ, z instead of x, y, z. By using ρ2 = x2 + y2 and y = ρ sinϕ, we obtain

ux = A uρ − B uϕ.

Find A and B . In this way we obtain ∆u = uρρ +
1
ρ
uρ +

1
ρ2
uϕϕ + uzz.

Solution We note that

ρ2 = x2 + y2 ⇒ 2ρ
∂ρ

∂x
= 2x, 2ρ

∂ρ

∂y
= 2y

⇒ ∂ρ

∂x
=

x

ρ
= cosϕ,

∂ρ

∂y
=

y

ρ
= sinϕ,

and

y = ρ sinϕ ⇒ 0 =
∂ρ

∂x
sinϕ+ ρ cosϕ

∂ϕ

∂x
= cosϕ sinϕ+ ρ cosϕ

∂ϕ

∂x

⇒ ∂ϕ

∂x
= −sinϕ

ρ
.

We have

ux =
∂u

∂x
=

∂u

∂ρ

∂ρ

∂x
+

∂u

∂ϕ

∂ϕ

∂x
= cosϕ

∂u

∂ρ
− sinϕ

ρ

∂u

∂ϕ
.

Therefore

A = cosϕ, B =
sinϕ

ρ
.



Problem 3. (10 points) Find u(x, t) for the heat equation
{

ut = Kuxx, t > 0, −∞ < x < ∞,

u = e−x2

, t = 0, −∞ < x < ∞.

Solution The solution u(x, t) is written as

u(x, t) =

∫

∞

−∞

1√
4πKt

e−(x−x′)2/4Kte−x′2

dx′.

We note that

−(x− x′)2

4Kt
− x′2 = −4Kt+ 1

4Kt

(

x′ − x

4Kt+ 1

)2

− x2

4Kt+ 1
.

Therefore we have

u(x, t) =
1√

4πKt
e−x2/(4Kt+1)

∫

∞

−∞

exp

[

−4Kt+ 1

4Kt

(

x′ − x

4Kt+ 1

)2
]

dx′.

Using the Gaussian integral we obtain

u(x, t) =
1√

4Kt+ 1
e−x2/(4Kt+1).



(continued)



Problem 4. (10 points) Solve
{

tut + xux + u = 0, t > 1, −∞ < x < ∞,

u = x, t = 1, −∞ < x < ∞.

Solution Let us introduce s and τ . We have






dt

ds
= t, s > 0,

t = 1, s = 0,

and






dx

ds
= x, s > 0,

x = τ, s = 0,

By solving the equations we obtain

t = es, x = τes.

We note that

du

ds
=

∂u

∂t

dt

ds
+

∂u

∂x

dx

ds
= tut + xux = −u.

Therefore we have






du

ds
+ u = 0, s > 0,

u = τ, s = 0.

We obtain

u = e−sτ.

Since

s = ln t, τ =
x

t
,

finally we obtain

u(x, t) =
1

t

x

t
=

x

t2
.



Problem 5. (10 points) Let us consider the vibrating (circular) membrane problem (i.e.,

the edges are fixed) in the case where the radius is a and u(ρ, ϕ, 0) = 0. The general solution

to utt = c2∇2u is written as

u(ρ, ϕ, t) =
∞
∑

m=0

∞
∑

n=1

Jm

(

ρx
(m)
n

a

)

(Amn cosmϕ+ Bmn sinmϕ) sin
ctx

(m)
n

a
,

where Jm(x
(m)
n ) = 0, x

(m)
n > 0, and Amn, Bmn are constants. Find the solution u(ρ, ϕ, t)

when ut(ρ, ϕ, 0) = J5(ρx
(5)
1 /a) sin(5ϕ), 0 < ρ < a.

Solution We introduce x = ρ/a. To satisfy the condition ut(ρ, ϕ, 0) = J5(xx
(5)
1 ) sin(5ϕ),

Amn, Bmn must satisfy

J5(xx
(5)
1 ) sin(5ϕ) =

∞
∑

m′=0

∞
∑

n′=1

cx
(m′)
n′

a
Jm′(xx

(m′)
n′ ) (Am′n′ cosm′ϕ+ Bm′n′ sinm′ϕ) .

If we multiply sinmϕ, m = 1, 2, . . ., and integrate on both sides over ϕ, we obtain

J5(xx
(5)
1 )πδm5 = π

∞
∑

n′=1

cx
(m)
n′

a
Jm(xx

(m)
n′ )Bmn′ , (1)

where we used the orthogonality relations. Similarly by multiplying cosmϕ, m = 0, 1, 2, . . .,

we obtain

0 = π
∞
∑

n′=1

cx
(m)
n′

a
Jm(xx

(m)
n′ )Amn′ . (2)

We then multiply (1) and (2) by Jm(xx
(m)
n )x and integrate over x. Using the orthogonality

relations we have

1

2
J6(x

(5)
1 )2δm5δn1 =

cx
(m)
n

a

1

2
Jm+1(x

(m)
n )2Bmn, 0 =

cx
(m)
n

a

1

2
Jm+1(x

(m)
n )2Amn.

Hence Amn = Bmn = 0 except B51 = a/(cx
(5)
1 ). Finally we obtain

u(ρ, ϕ, t) =
a

cx
(5)
1

J5

(

ρx
(5)
1

a

)

sin 5ϕ sin
ctx

(5)
1

a
.



(continued)



Problem 6. (10 points) Let {xn} be the nonnegative solutions to Jm(xn) = 0, where m ≥ 0.

We have
∫ 1

0

Jm(xxn1
)Jm(xxn2

)xdx =
1

2
Jm+1(xn1

)2δn1n2
.

Let us show that the right-hand side is 0 when n1 6= n2. The proof is shown below. What

are A , B , and C ?

Step 1 We note that d2Jm(x)
dx2 + 1

x
dJm(x)

dx
+
(

1− m2

x2

)

Jm(x) = 0. Hence,

d

dx

(

x
dy1(x)

dx

)

+

(

xx2
n1

− m2

x

)

y1(x) = 0, (3)

d

dx

(

x
dy2(x)

dx

)

+

(

xx2
n2

− m2

x

)

y2(x) = 0, (4)

where yi(x) = Jm(xxni
) (i = 1, 2).

Step 2 We multiply (3) by A and multiply (4) by B , and integrate both sides over x.

Step 3 By subtracting the resulting equations we obtain

(y′1y2 − y1y
′

2)
∣

∣

∣

x=1
+ C

∫ 1

0

xy1(x)y2(x)dx = 0.

The first term vanishes due to the boundary conditions. Since n1 6= n2, thus, the

orthogonality relations are proved.

Solution

A = y2(x), B = y1(x), C = x2
n1

− x2
n2
.



Problem 7. (10 points) Let f(s) = 0 for −1 < s < 1
2
and f(s) = 1 for 1

2
< s < 1. Find the

expansion of f(s) in a series of Legendre polynomials. (Hint:
∫ 1

−1
Pk(s)Pj(s)ds =

2
2k+1

δkj.)

Solution We write

f(s) =
∞
∑

k=0

AkPk(s), −1 < s < 1,

where Ak are constants to be determined. We multiply Pj(s) and integrate over s:
∫ 1

−1

f(s)Pj(s)ds =
∞
∑

k=0

Ak

∫ 1

−1

Pk(s)Pj(s)ds.

The left-hand side is obtained as follows. For j = 0, we have

LHS =

∫ 1

1/2

P0(s)ds =

∫ 1

1/2

ds =
1

2
.

For j ≥ 1, we have

LHS =

∫ 1

1/2

Pj(s)ds =

∫ 1

1/2

−1

j(j + 1)

d

ds

[

(1− s2)
d

ds
Pj(s)

]

ds

=
−1

j(j + 1)
(1− s2)

d

ds
Pj(s)

∣

∣

∣

∣

1

1/2

=
1

j(j + 1)

3

4

dPj

ds
(
1

2
).

The right-hand side is obtained as

RHS =
∞
∑

k=0

Ak

∫ 1

−1

Pk(s)Pj(s)ds =
∞
∑

k=0

Ak
2

2k + 1
δkj =

2Aj

2j + 1
.

Therefore we obtain

A0 =
1

4
, Aj =

3(2j + 1)

8j(j + 1)
P ′

j

(

1

2

)

(j ≥ 1).

That is,

f(s) =
1

4
+

3

8

∞
∑

k=1

2k + 1

k(k + 1)
P ′

k

(

1

2

)

Pk(s), −1 < s < 1.



Problem 8. (10 points) Find u(x, t).










ut = Kuxx, t > 0, 0 < x < L,

u = 0, t > 0, x = 0, L,

u = δ(x− 1), t = 0, 0 < x < L.

Solution By assuming the form u(x, t) = φ(x)T (t) and introducing the separation constant

λ = −φ′′/φ, we have

φ′′ + λφ = 0, φ(0) = φ(L) = 0, T ′ + λKT = 0.

We obtain

φ(x) = φn(x) = sin
nπx

L
, λ = λn =

(nπ

L

)2

, n = 1, 2, . . . , T (t) = e−λKt.

Note that
∫ L

0

φn(x)φm(x)dx =
L

2
δnm.

Thus the general solution is given by

u(x, t) =
∞
∑

n=1

Anφn(x)e
−λnKt.

The initial condition is written as

δ(x− 1) =
∞
∑

n=1

Anφn(x).

If L < 1, then we have An = 0 and u(x, t) = 0. Hereafter we assume L > 1. We multiply

φm(x) on both sides and integrate over x.
∫ L

0

δ(x− 1)φm(x)dx =

∫ L

0

∞
∑

n=1

Anφn(x)φm(x)dx.

We obtain φm(1) = Am
L
2
, and

Am =
2

L
φm(1).

Therefore we obtain

u(x, t) =
2

L

∞
∑

n=1

sin
nπ

L
sin

nπx

L
e−(nπ/L)2Kt.



(continued)

Alternative Solution Let us extend δ(x− 1) as an odd 2L-periodic function by setting

fO(x) =











δ(x− 2mL− 1), 2mL < x < (2m+ 1)L,

0, x = 2mL, (2m+ 1)L, (2m+ 2)L,

−δ(−x+ (2m+ 2)L− 1), (2m+ 1)L < x < (2m+ 2)L,

where m = 0,±1,±2, . . .. Note that fO(x+ 2L) = fO(x) for all x. Then we have

u(x, t) =

∫

∞

−∞

G(x, x′; t)fO(x
′)dx′ =

∞
∑

m=−∞

{

∫ (2m+1)L

2mL

+

∫ (2m+2)L

(2m+1)L

}

G(x, x′; t)fO(x
′)dx′.

We obtain

u(x, t) =

∫ L

0

GL(x, x
′; t)δ(x′ − 1)dx′,

where

GL(x, x
′; t) =

∞
∑

m=−∞

[G(x, x′ + 2mL; t)−G(x,−x′ + (2m+ 2)L; t)] ,

and

G(x, x′; t) =
1√

4πKt
e−(x−x′)2/4Kt.

If L < 1, then we have u(x, t) = 0. If L > 1, we obtain

u(x, t) = GL(x, 1; t)

=
1√

4πKt

∞
∑

m=−∞

[

e−(x−2mL−1)2/4Kt − e−(x−(2m+2)L+1)2/4Kt
]

.



Formulae

cosh x =
ex + e−x

2
, sinh x =

ex − e−x

2
, tanh x =

ex − e−x

ex + e−x

cosh2 x− sinh2 x = 1, cosh(−x) = cosh x, sinh(−x) = − sinh x

cosh(2x) = cosh2 x+ sinh2 x, sinh(2x) = 2 sinh x cosh x, tanh(2x) =
2 tanh x

1 + tanh2 x

cosh2 x =
cosh 2x+ 1

2
, sinh2 x =

cosh 2x− 1

2
, 1− tanh2 x = sech2 x =

1

cosh2 x
d cosh x

dx
= sinh x,

d sinh x

dx
= cosh x,

d tanh x

dx
= sech2 x =

1

cosh2 x

cos(A±B) = cosA cosB ∓ sinA sinB

sin(A±B) = sinA cosB ± cosA sinB

tan(A±B) =
tanA± tanB

1∓ tanA tanB

cosA cosB =
1

2
[cos(A−B) + cos(A+ B)]

sinA sinB =
1

2
[cos(A−B)− cos(A+ B)]

sinA cosB =
1

2
[sin(A+B) + sin(A− B)]

cosA sinB =
1

2
[sin(A+B)− sin(A−B)]

cosh(A± B) = coshA coshB ± sinhA sinhB

sinh(A±B) = sinhA coshB ± coshA sinhB

tanh(A± B) =
tanhA± tanhB

1± tanhA tanhB

coshA coshB =
1

2
[cosh(A+ B) + cosh(A−B)]

sinhA sinhB =
1

2
[cosh(A+ B)− cosh(A− B)]

sinhA coshB =
1

2
[sinh(A+ B) + sinh(A−B)]

coshA sinhB =
1

2
[sinh(A+ B)− sinh(A− B)]



Theorems

Theorem 1. For m,n = 1, 2, · · ·, we have
∫ L

−L

cos
nπx

L
cos

mπx

L
dx = Lδnm,

∫ L

−L

sin
nπx

L
sin

mπx

L
dx = Lδnm,

∫ L

−L

sin
nπx

L
cos

mπx

L
dx = 0.

Theorem 2. For m,n = 1, 2, · · ·, we have
∫ L

0

cos
nπx

L
cos

mπx

L
dx =

L

2
δnm,

∫ L

0

sin
nπx

L
sin

mπx

L
dx =

L

2
δnm,

∫ L

0

sin
nπx

L
cos

mπx

L
dx =







2Ln

π (n2 −m2)
for odd n+m,

0 otherwise.

Theorem 3. Consider the Sturm-Liouville problem

[s(x)φ′(x)]′ + [λρ(x)− q(x)]φ(x) = 0, a < x < b,

where ρ(x) > 0, with the boundary conditions

φ(a) cosα− Lφ′(a) sinα = 0, φ(b) cos β + Lφ′(b) sin β = 0,

where L = b − a, and α, β ∈ [0, π) are some parameters. Suppose that φ1(x), φ2(x)

are nontrivial solutions with different eigenvalues λ1 6= λ2. Then the eigenfunctions are

orthogonal with respect to the weight function ρ(x), a < x < b:
∫ b

a

φ1(x)φ2(x)ρ(x)dx = 0.

Theorem 4. For m,n = 1, 2, · · ·, we have
∫ L2

0

∫ L1

0

sin
mπx

L1

sin
nπy

L2

sin
m′πx

L1

sin
n′πy

L2

dxdy =
L1L2

4
δmm′δnn′ .



Cylindrical and spherical coordinates

x = ρ cosϕ, y = ρ sinϕ, z = z,

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.

Bessel’s equation

J ′′

m(x) +
1

x
J ′

m(x) +

(

1− m2

x2

)

Jm(x) = 0.

The Legendre equation

[

(1− s2)P ′

k(s)
]

′

+ k(k + 1)Pk(s) = 0.

Fourier transform

f(x) =

∫

∞

−∞

f̃(µ)eiµxdµ, f̃(µ) =
1

2π

∫

∞

−∞

f(x)e−iµxdx.

Gaussian integral

∫

∞

−∞

e−a(x−b)2dx =

√

π

a
, a > 0.

Green’s functions

The solution to
{

ut −Kuxx = h(x, t), t > 0, −∞ < x < ∞,

u = f(x), t = 0, −∞ < x < ∞,

is given by

u(x, t) =

∫

∞

−∞

G(x, x′; t)f(x′)dx′ +

∫ t

0

∫

∞

−∞

G(x, x′; t− s)h(x′, s)dx′ds,

where

G(x, x′; t) =
1√

4πKt
e−(x−x′)2/(4Kt).


