
MATH417 Matrix Algebra I

1 Introduction 1

In this course we will study matrix algebra, or linear algebra.
The relation such as 2x− 1 = 0 is said to be an equation. Let us consider

the following multiple equations, or a system.











2x+ 8y + 4z = 2,

2x+ 5y + z = 5,

4x+ 10y − z = 1.

(1)

We can write this system as

A~x = ~b, (2)

where

A =







2 8 4

2 5 1

4 10 −1






, ~x =







x

y

z






, ~b =







2

5

1






. (3)

Here A is a matrix, and ~x,~b are vectors. A vector can be regarded as a matrix
with one column. The matrix A is a 3× 3 matrix because it has 3 rows and
3 columns. The entry or element which belongs to the ith row and the jth
column can be expressed as aij . For example, a12 = 8.

The n× n matrix In below is called the identity matrix.

In =













1

1
. . .

1













,

where n diagonal entries are all 1 and other entries are zero.
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1 This section is related to Chapter 1 of the textbook.
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If we find a matrix A−1 which satisfies

A−1A = I3,

then we can obtain ~x as

A−1A~x = A−1~b ⇒ ~x = A−1~b.

This A−1 is called the inverse of A.
The set of real numbers is denoted by R. The set of complex numbers

is denoted by C. A number in R or C is said to be a scalar. The sets of
n-dimensional real and complex numbers are denoted by R

n and C
n, respec-

tively. For example, ~x,~b ∈ R
3. Similarly R

n×m denotes the set of all real
n×m matrices. For example, in (3), A ∈ R

3×3.

2 Gauss-Jordan elimination 2

Let us solve the linear system (2). First we write a 3 × 4 matrix
[

A
∣

∣

∣

~b
]

,

which is called the augmented matrix.







2 8 4 2

2 5 1 5

4 10 −1 1







We note that we usually solve (1) by dividing or multiplying an equation by
a constant, and subtracting or adding a multiple of an equation from another
equation. This means we can obtain ~x by simplifying the augmented matrix
using the following elementary row operations:

• Divide or multiply a row by a nonzero scalar.
• Subtract or add a multiple of a row from another rows.
• Swap two rows.

Let us solve A~x = ~b using the augmented matrix. We want to change the

left part of
[

A
∣

∣

∣

~b
]

to I3.

Step 1: (1st row)/2

2 This section is related to Chapter 1 of the textbook.
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





1 4 2 1

2 5 1 5

4 10 −1 1






.

Step 2: (2nd row)− 2 · (1st row), (3rd row)− 4 · (1st row)






1 4 2 1

0 −3 −3 3

0 −6 −9 −3






.

Step 3: (2nd row)/(−3)







1 4 2 1

0 1 1 −1

0 −6 −9 −3






.

Step 4: (1st row)− 4 · (2nd row), (3rd row) + 6 · (2nd row)







1 0 −2 5

0 1 1 −1

0 0 −3 −9






.

Step 5: (3rd row)/(−3)







1 0 −2 5

0 1 1 −1

0 0 1 3






.

Step 6: (1st row) + 2 · (3rd row), (2nd row)− (3rd row)







1 0 0 11

0 1 0 −4

0 0 1 3






.

The last form is said to be the reduced row-echelon form (see below) and
implies the matrix-vector equation



4







1 0 0

0 1 0

0 0 1













x

y

z






=







11

−4

3






,

or
x = 11, y = −4, z = 3.

In this way we can obtain ~x.

A matrix is said to be in reduced row-echelon form when the matrix
satisfies the following conditions.

• If a row has nonzero entries, then the first nonzero entry or the pivot
is 1. This 1 is called the leading 1 in the row.

• If a column contains a leading 1, then all the other entries in the
column are 0.

• If a row contains a leading 1, then each row above it contains a
leading 1 further to the left.

Let rref(A) denote the reduced row-echelon form of A.

Example 1.

rref(







2 8 4 2

2 5 1 5

4 10 −1 1






) =







1 0 0 11

0 1 0 −4

0 0 1 3






, rref(







2 8 4

2 5 1

4 10 −1






) =







1 0 0

0 1 0

0 0 1






.

——–

If the number of equations is less than the number of unknowns (underde-

termined), the length of the solution vector ~x is shorter than the length of ~b.
If the number of equations is greater than the number of unknowns (overde-

termined), the length of the solution vector ~x is longer than the length of ~b.
In either case, the coefficient matrix A becomes a rectangle.

Example 2 (Underdetermined). Let us consider











2x+ 4y + z = 4,

x+ 2y + z = 3,

x+ 2y = 1.

We have

rref(







2 4 1 4

1 2 1 3

1 2 0 1






) =







1 2 0 1

0 0 1 2

0 0 0 0






.
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The zero row at the bottom implies the third equation in the system is not
independent. Thus we can drop this equation and consider

{

2x+ 4y + z = 4,

x+ 2y + z = 3,

and have

rref(

[

2 4 1 4

1 2 1 3

]

) =

[

1 2 0 1

0 0 1 2

]

.

That is, we have
{

x+ 2y = 1,

z = 2.

We note that y is a free variable and x, z are leading variables. There are
infinitely many solutions depending on y. Using an arbitrary constant t, we
can write

x = 1− 2t, y = t, z = 2.

This example implies that in a linear system there are infinitely many solu-
tions if there exist more than one solution.
——–

Example 3 (Overdetermined). Let us consider



















x+ 2y + z = 1,

3x+ 6y + 2z = 2,

x+ 2y + z = 2,

2x+ 4y + 2z = 1.

The reduced row-echelon form is obtained as

rref(











1 2 1 1

3 6 2 2

1 2 1 2

2 4 2 1











) =











1 2 0 0

0 0 1 0

0 0 0 1

0 0 0 0











.

On the third line, we have 0 = 1. There is no solution.
——–

If there is a unique solutions or there are infinitely many solutions, we say
the system is consistent. The system is inconsistent if there is no solution.
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3 Rank 3

We define the rank of a matrix A as

rank(A) = the number of leading 1’s in rref(A).

Example 4.

rank(







2 1 1

1 2 3

3 1 2






) = rank(







1 0 0

0 1 0

0 0 1






) = 3,

rank(











1 2 1

3 6 2

1 2 1

2 4 2











) = rank(











1 2 0

0 0 1

0 0 0

0 0 0











) = 2.

——–

Suppose we have a system with n equations and m variables. Then the
coefficient matrix A is an n×m matrix. We have

1. rank(A) ≤ n, rank(A) ≤ m
2. rank(A) = n ⇒ consistent
3. rank(A) = m ⇒ one solution or inconsistent
4. rank(A) < m ⇒ infinitely many solutions or inconsistent

Furthermore,

• The number of free variables = m− rank(A)
• For an n×nmatrix A, there is a unique solution if and only if rank(A) = n.

In this case, rref(A) = I.

4 Linearity 4

Let A be an n×m matrix, ~x, ~y ∈ R
m, and α, β be scalars. We have

A (α~x+ β~y) = αA~x+ βA~y.

3 This section is related to Chapter 1 of the textbook.
4 This section is related to Chapter 1 of the textbook.
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This is called linearity.
A vector ~b ∈ R

n is called a linear combination or superposition of
~v1, . . . , ~vm in R

n if ~b is given by

~b = x1~v1 + · · ·+ xm~vm,

where x1, . . . , xm are scalars.

5 Linear transformations 5

Suppose output ~y is determined by some operations T from input ~x:

~x
T−→ ~y.

If T satisfies
T (α~x+ β~y) = αT (~x) + βT (~y),

then T is called a linear transformation.

If T is a linear transformation, we can express T as

T (~x) = A~x.

Conversely, a matrix A represents some linear transformation T .

Example 5 (Scaling). The transformation T :

~x
T−→ k~x = ~y, k ∈ R

can be written as

T (~x) =

[

k 0

0 k

]

~x.

——–

Example 6 (Rotation). The transformation T :

~x =

[

cos θ0

sin θ0

]

T−→ ~y =

[

cos(θ + θ0)

sin(θ + θ0)

]

,

can be written as

5 This section is related to Chapter 2 of the textbook.
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T (~x) = Rθ

[

cos θ0

sin θ0

]

,

where

Rθ =

[

cos θ − sin θ

sin θ cos θ

]

.

——–

Example 7. Let us consider matrix A =

[

a −b

b a

]

. Since we can express A

as

A = r

[

a
r − b

r
b
r

a
r

]

, r =
√

a2 + b2,

= r

[

cos θ − sin θ

sin θ cos θ

]

, tan θ =
b

a
,

=

[

r 0

0 r

][

cos θ − sin θ

sin θ cos θ

]

=

[

cos θ − sin θ

sin θ cos θ

][

r 0

0 r

]

,

this A represents a rotation combined with a scaling.
——–

Example 8 (Composition). Let us consider the rotation through π/2:

[

1

0

]

−→ Rπ/2

[

1

0

]

.

We have

Rπ/2

[

1

0

]

=

[

0 −1

1 0

][

1

0

]

=

[

0

1

]

.

But we should obtain the same vector by rotating the input vector through
π/3 then rotating the resulting vector through π/6:

[

1

0

]

−→ Rπ/6Rπ/3

[

1

0

]

.

Let us check this. Indeed we obtain

Rπ/6Rπ/3

[

1

0

]

= Rπ/6

[

1
2 −

√
3
2√

3
2

1
2

][

1

0

]

=

[ √
3
2 −1
1
2

√
3
2

][

1
2√
3
2

]

=

[

0

1

]

.

——–
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Example 9 (Counterexamples). We consider the transformation T from R
2 to

R
2 such that

[

x1

x2

]

T−→
[

x1

x2 + 1

]

.

We have

T (α

[

x1

x2

]

+ β

[

y1

y2

]

) = T (

[

αx1 + βy1

αx2 + βy2

]

) =

[

αx1 + βy1

αx2 + βy2 + 1

]

.

On the other hand, we obtain

αT (

[

x1

x2

]

) + βT (

[

y1

y2

]

) = α

[

x1

x2 + 1

]

+ β

[

y1

y2 + 1

]

.

The two results are different in general, and T is not a linear transformation.
The transformation T cannot be represented by any matrix.

Let us also consider the transformation T from R
2 to R that computes the

length: The transformation T :

[

x1

x2

]

T−→
√

x2
1 + x2

2.

It is enough to give one concrete example. We have

T (

[

1

0

]

+

[

0

1

]

) = T (

[

1

1

]

) =
√

12 + 12 =
√
2.

On the other hand, we obtain

T (

[

1

0

]

) + T (

[

0

1

]

) =
√
12 +

√
12 = 2.

The two results are different and T is not a linear transformation.
——–

6 Orthogonal projections and reflections 6

Let us consider a line L in the x-y plane running through the origin. Any
vector ~x ∈ R

2 can be uniquely decomposed as

~x = ~x‖ + ~x⊥,

6 This section is related to Chapter 2 of the textbook.
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where ~x‖ is parallel to L and ~x⊥ is perpendicular to L.

The transformation projL(~x) = ~x‖ from R
2 to R

2 is called the orthog-
onal projection of ~x onto L.

We note that if L is the x-axis, we have

projL(~x) = ~x‖ = x1~e1 =

[

1 0

0 0

][

x1

x2

]

,

where ~e1 =

[

1

0

]

is the standard vector along the x-axis. Let θ be the angle

between L and the x-axis. Then ~u =

[

cos θ

sin θ

]

is a unit vector parallel to L.

We can compute projL(~x) as follows.

projL(~x) = Rθ

[

1 0

0 0

]

R−θ~x

=

[

cos θ − sin θ

sin θ cos θ

][

1 0

0 0

][

cos θ sin θ

− sin θ cos θ

]

~x

=

[

cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

][

x1

x2

]

.

We further proceed as

projL(~x) =

[

(x1 cos θ + x2 sin θ) cos θ

(x1 cos θ + x2 sin θ) sin θ

]

=

([

x1

x2

]

·
[

cos θ

sin θ

])[

cos θ

sin θ

]

= (~x · ~u) ~u. (4)

We note that since ‖~u‖ = |~u| =
√
~u · ~u = 1,

~x · ~u = ‖~x‖ cos(angle between ~x and ~u).

The reflection of ~x about L is a linear transformation T (~x) = refL(~x)
which transforms ~x into its image on the opposite side of a mirror. We have

refL(~x) = ~x‖ − ~x⊥ = 2projL(~x)− ~x = 2 (~x · ~u) ~u− ~x.
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We note that

refL(~x) = 2

[

cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

][

x1

x2

]

−
[

x1

x2

]

=

[

cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

][

x1

x2

]

.

Thus we obtain the matrix of refL. Conversely, any matrix of this form rep-
resents a reflection about a line.

Orthogonal projections and reflections in space can be considered in the
same way. Let ~u ∈ R

3 is a unit vector parallel to L. For ~x ∈ R
3 we have

projL(~x) = (~x · ~u) ~u, refL(~x) = 2 projL(~x)− ~x.

7 Inverse 7

For a linear transformation

T (~x) = A~x = ~y,

let us consider its inverse T−1 such that

~x = T−1(~y) = A−1~y.

A linear transformation T is said to be invertible and T−1 exists if T is
bijective or

~y = A~x

has a unique solution for all ~y. Otherwise T is noninvertible. The matrix
A is said to be invertible and A−1 exists if T is invertible.

Remark 1. The inverse T−1 of a linear transformation T is also linear.

Example 10. Consider
[

1 2

3 4

]

~x = ~y.

The inverse is calculated as

~x =

[

1 2

3 4

]−1

~y =

[

−2 1

3/2 −1/2

]

~y,

7 This section is related to Chapter 2 of the textbook.
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where we used the relation

A =

[

a b

c d

]

, A−1 =
1

det(A)

[

d −b

−c a

]

.

Here det(A) = ad− bc is called the determinant.
——–

Example 11 (Noninvertible). Consider a linear transformation T (~x) = A~x,
where

A =

[

1 2

3 6

]

.

We have

A

[

1

1

]

=

[

3

9

]

, A

[

−1

2

]

=

[

3

9

]

.

At least two vectors in the domain are transformed into one vector in the
target space. We cannot obtain the inverse:

A−1

[

3

9

]

=?

In the present case T is noninvertible. Indeed we have

det(A) = ad− bc = 1 · 6− 2 · 3 = 0,

and A−1 doesn’t exist.
——–

Example 12. The orthogonal projection projL(~x) is not invertible but the
reflection refL(~x) is invertible. Although we can understand this geometri-
cally, here let us calculate the determinants of the matrices for projL(~x) and
refL(~x). For projL(~x) we have

det

[

cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]

= det

[

1+cos(2θ)
2

sin(2θ)
2

sin(2θ)
2

1−cos(2θ)
2

]

=
1− cos2(2θ)

4
− sin2(2θ)

4
=

1− 1

4
= 0.

For refL(~x) we have

det

[

cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

]

= − cos2(2θ)− sin2(2θ) = −1 6= 0.

——–
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We know from Sec. 3 that in general a unique solution of the system of
an n × m matrix A implies rank(A) = m. In particular we studied that
there is a unique solution to a system of an n × n matrix A if and only if
rank(A) = n ⇔ rref(A) = In.

Theorem 1 (Invertibility). We have

An n× n matrix A is invertible ⇔ rref(A) = In ⇔ rank(A) = n.

Remark 2. An n×n matrix A is invertible if and only if A~x = ~b has a unique
solution ~x ∈ R

n for a vector ~b ∈ R
n. Or we can say

A is noninvertible ⇔ infinitely many solutions or none

Remark 3. Suppose T (~x) = A~x is an invertible linear transformation from
R

m to R
n. Let B be the m × n matrix of T−1. If BA = In and AB = Im,

then n = m.

We can compute A−1 as follows. Suppose that an n × n matrix A is in-
vertible and rref(A) = In. We write A and its inverse A−1 as

A =













a11 a12 . . . a1n

a21 a22
...

. . .

an1 ann













, A−1 =













α11 α12 . . . α1n

α21 α22

...
. . .

αn1 αnn













Let us begin with

A~x = ~e1 =













1

0
...

0













.

Note that

~x = A−1~e1 =













α11

α21

...

αn1













.

By making use of Gauss-Jordan elimination we obtain
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rref([A |~e1 ]) =









α11

In
...

αn1









We expand this calculation. Since [~e1 ~e2 . . . ~en ] = In, we have

rref([A | In ]) =
[

In |A−1
]

.

Thus A−1 is obtained. If the left part of the matrix on the right-hand side or
rref(A) is not In, then A−1 doesn’t exist.

For invertible n× n matrices A,B, we have the following properties.

• A−1A = AA−1 = In
•
(

A−1
)−1

= A

• (BA)
−1

= A−1B−1

The last formula above is obtained as follows. Consider ~y = BA~x. From
this we obtain B−1~y = A~x. If we multiply A−1, we obtain A−1B−1~y = ~x.
Thus we could construct the inverse of BA; the matrix (BA)−1 exists and
~x = (BA)−1~y. We have (BA)−1 = A−1B−1.

Theorem 2. We have the following criterion for invertibility. Let A,B be
n× n matrices. If BA = In, then

(a) A,B are invertible
(b) A−1 = B and B−1 = A
(c) AB = In

Proof. Let us first prove (a) and (b). We consider ~x such that A~x = ~0. Then

BA~x = B~0 = ~0.

Since BA = In, we see ~x = ~0. That is, ~x is the unique solution to A~x = ~0.
Hence A is invertible. We multiply A−1 by BA:

BAA−1 = InA
−1

∴ B = A−1.

Thus B is also invertible and

B−1 =
(

A−1
)−1

= A.

We can prove (c) by
AB = AA−1 = In.

⊓⊔
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8 Image and kernel 8

Let us define the image a linear transformation T (~x) = A~x as

im(T ) = im(A) = {~y : T (~x) = ~y for all ~x} .

Example 13. Suppose a linear transformation from R
2 to R

2 is expressed as

T (~x) = A~x, where A =

[

1 2

3 4

]

. We have

A

[

x1

x2

]

= x1

[

1

3

]

+ x2

[

2

4

]

.

Thus im(T ) is R2, the set of all vectors in the x-y plane.
——–

Example 14. Suppose a linear transformation from R
2 to R

2 is expressed as

T (~x) = A~x, where A =

[

1 2

3 6

]

. We have

A

[

x1

x2

]

= x1

[

1

3

]

+ x2

[

2

6

]

= (x1 + 2x2)

[

1

3

]

.

Thus im(T ) is the line of all scalar multiples of

[

1

3

]

.

——–

In general a vector can be expressed as a linear combination. For example,

[

1

2

]

= ~e1 + 2~e2.

We define the span of the vectors ~v1, . . . , ~vm in R
n as

span(~v1, . . . , ~vm) = {c1~v1 + · · ·+ cm~vm : c1, . . . , cm ∈ R} .

Example 15. We have

8 This section is related to Chapter 3 of the textbook.
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im(

[

1 2

3 4

]

) = span(

[

1

3

]

,

[

1

2

]

), im(

[

1 2

3 6

]

) = span(

[

1

3

]

).

——–

Theorem 3. For a linear transformation T (~x) = A~x from R
m to R

n, where
A = [~v1 · · ·~vm], we have

im(T ) = span(~v1, . . . , ~vm).

The image of T is also called the column space of A because ~v1, . . . , ~vm are
the column vectors of A.

Proof. We note that

T (~x) = A~x =













v11 · · · v1m

v21 · · · v2m
...

...

vn1 · · · vnm





















x1

...

xm









= x1~v1 + · · ·+ xm~vm.

Thus the set of T (~x) for all ~x is the set of all linear combinations of ~v1, . . . , ~vm.
⊓⊔

The set of zeros of a linear transformation T (~x) = A~x is called the kernel
of T .

ker(T ) = ker(A) =
{

~x : T (~x) = ~0
}

.

The kernel of T is the solution set of A~x = ~0. The kernel of T is also called
the null space of A.

Remark 4. Suppose T is a linear transformation from R
m to R

n. Then im(T )
is a subset of the target space R

n of T and ker(T ) is a subset of the domain
R

m of T .

Example 16. Let us consider a linear transformation T (~x) = A~x from R
3

to R
2, where A =

[

1 1 1

1 2 3

]

. We can calculate ker(T ) as follows. By

recalling that the kernel is the solution set, we consider

[

1 1 1

1 2 3

]







x1

x2

x3






= ~0.
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Since

rref(

[

1 1 1 0

1 2 3 0

]

) =

[

1 0 −1 0

0 1 2 0

]

,

we obtain






x1

x2

x3






= t







1

−2

1






,

where t is an arbitrary constant. Hence, ker(T ) = span(







1

−2

1






).

——–

The above example implies that for an n × m matrix A with m > n,
there are nonzero vectors in ker(A). Note that the number of free variables is
m−rank(A) ≥ m−n (rank(A) ≤ n). Hence we have at least one free variable
when m− n > 0. By contraposition we have

ker(A) = {~0} ⇒ m ≤ n.

For an n × m matrix A, ker(A) = {~0} means that A~x = ~0 has a unique
solution ~x = ~0, which implies rank(A) = m (see Sec. 3). That is,

ker(A) = {~0} ⇔ rank(A) = m.

Theorem 4. For a square n× n matrix A,

ker(A) = {~0} ⇔ A is invertible.

We have the following equivalent statements related to invertibility in The-
orem 1.

An n× n matrix A is invertible

⇔ A~x = ~b has a unique solution ~x for all ~b ∈ R
n

⇔ rref(A) = In ⇔ rank(A) = n

⇔ im(A) = R
n ⇔ ker(A) = {~0}. (5)

9 Subspaces 9

A set V of vectors is called a vector space10 if for ~x, ~y ∈ V ,

9 This section is related to Chapter 3 of the textbook.
10 More precisely, a set V which is closed under linear combinations is called a vector
space or a linear space if the following rules are satisfied. Let f, g, h ∈ V and c, k ∈ R.
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• ~x+ ~y ∈ V ,
• ~0 ∈ V ,
• −~x ∈ V , and
• k~x ∈ V for k ∈ R.

For example, the set Rn of all (column) vectors with n components is a vector
space. Also {~0} is a vector space.

A subset W of a vector space V is called a subspace if

• W contains ~0 ∈ V ,
• W is closed under addition (~w1 + ~w2 ∈ W for ~w1, ~w2 ∈ W ), and
• W is closed under scalar multiplication (k ~w ∈ W for ~w ∈ W,k ∈ R).

Theorem 5. For a linear transformation T (~x) = A~x from R
m to R

n,

• ker(A) is a subspace of Rm and
• im(A) is a subspace of Rn.

Proof. We can check that the solution set of ~x ∈ R
m such that A~x = ~0

satisfies the conditions for a subspace of Rm. We can also confirm that the
set of ~y ∈ R

n such that ~y = A~x satisfies the conditions for a subspace of
R

n. ⊓⊔

Example 17. Consider W = {~x ∈ R
2 : x ≥ 0, y ≥ 0}. This set W is not a

subspace of R2 because k ~w /∈ W for ~w ∈ W and k < 0.
——–

Example 18. The subspaces of R2 are R
2, {~0}, and any of the lines through

the origin.
We can show as follows that if W is a subspace of R2 which is neither {~0}

nor a line through the origin, then W = R
2. Let ~v1 ∈ W be a nonzero vector.

Let L be the line spanned by ~v1. Since W is a subspace, L ∈ W . Since W is
not a line, there exists a vector ~v2 ∈ W which is not on L. We can express
any vector v ∈ R

2 as a linear combination of ~v1 and ~v2. However since W
is a subspace, which is closed under linear combination, ~v is in W . That is,
W = R

2.
——–

Remark 5. Similarly, the subspaces of R3 are R
3, the planes through the ori-

gin, the lines through the origin, and {~0}.

(Addition) 1.1. (f+g)+h = f+(g+h). 1.2. f+g = g+f . 1.3. There exists 0 ∈ V such
that f+0 = f for all f . 1.4. For each f there exists −f such that f+(−f) = 0. (Scalar
multiplication) 2.1. k(f + g) = kf + kg. 2.2. (c+ k)f = cf + kf . 2.3. c(kf) = (ck)f .
2.4. 1f = f . For example, a set of all n×m matrices is a vector space. Also, a set of
all functions f(x), x ∈ R, is a vector space.
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Example 19. Let us findW1 = ker(
[

1 2 3
]

) andW2 = im(







−2 −3

1 0

0 1






).

Since ~x ∈ ker(
[

1 2 3
]

) ⊆ R
3 satisfies

[

1 2 3
]







x1

x2

x3






= 0,

we see that W1 is the plane x1 + 2x2 + 3x3 = 0 in R
3, and W1 is a subspace

of R3. Since

W2 = span(







−2

1

0






,







−3

0

1






),

and






−2

1

0






·







1

2

3






= 0,







−3

0

1






·







1

2

3






= 0,

we see that W2 is the plane x1+2x2+3x3 = 0. Thus W1 = W2. In general we
can express a subspace as the kernel of the image of a linear transformation.
——–

10 Bases 11

Let us begin by recalling we have in Example 13

[

1 2

3 4

][

x1

x2

]

= x1

[

1

3

]

+ x2

[

2

4

]

,

and in Example 14

[

1 2

3 6

][

x1

x2

]

= x1

[

1

3

]

+ x2

[

2

6

]

= (x1 + 2x2)

[

1

3

]

.

That is (Example 15),

im(

[

1 2

3 4

]

) = span(

[

1

3

]

,

[

1

2

]

), im(

[

1 2

3 6

]

) = span(

[

1

3

]

).

11 This section is related to Chapter 3 of the textbook.
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Consider ~v1, . . . , ~vm ∈ R
n.

• ~vi is redundant if ~vi is a linear combination of ~v1, . . . , ~vi−1.
• ~v1, . . . , ~vm are linearly independent if none of them is redundant.
• ~v1, . . . , ~vm form a basis of a subspace V of Rn if V is spanned by

~v1, . . . , ~vm which are linearly independent.

Example 20. Let ~v1, ~v2, ~v3 be

[

1

3

]

,

[

2

6

]

, and

[

2

4

]

, respectively. Then,

the vector ~v2 is redundant, and the vectors ~v1, ~v3 form a basis of R2.
——–

The above example shows that linearly independent column vectors of A
form a basis of im(A).

Example 21. Consider the following four vectors.

~v1 =











4

0

1

0











, ~v2 =











7

0

4

0











, ~v3 =











6

0

3

7











, ~v4 =











3

5

2

4











.

By looking at the second components and the fourth components, we find
that ~v1, . . . , ~v4 are linearly independent.
——–

Example 22. Consider the following three vectors.

~v1 =







4

1

7






, ~v2 =







7

4

6






, ~v3 =







6

3

5






.

To find their linear dependence, let us check if there exist solutions c1, c2 to
the equation

c1~v1 + c2~v2 = ~v3 ⇔







4 7

1 4

7 6







[

c1

c2

]

=







6

3

5







Since

rref(







4 7 6

1 4 3

7 6 5






) =







1 0 0

0 1 0

0 0 1






,
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we have 0 = 1 in the third row. That is, there is no solution, and ~v1, ~v2, ~v3
are linearly independent.
——–

Theorem 6. The vectors ~v1, . . . , ~vm ∈ R
n are linearly independent if and

only if there exists only the trivial relation among them, i.e., the following
(linear) relation holds only when c1 = · · · = cm = 0.

c1~v1 + · · ·+ cm~vm = ~0.

Proof. The theorem is proved if we prove that some of ~v1, . . . , ~vm are redun-
dant if and only if there are nontrivial relations among them.

Suppose ~vi is redundant. Then, using some constants c1, . . . , ci−1 we have
~vi = c1~v1 + · · ·+ ci−1~vi−1. Thus we have a nontrivial relation

c1~v1 + · · ·+ ci−1~vi−1 + (−1)~vi + 0~vi+1 + · · ·+ 0~vm = 0.

Conversely, suppose that there is a nontrivial relation c1~v1+ · · ·+ ci−1~vi−1+
· · · + cm~vm = ~0, where i is the highest index such that ci 6= 0, i.e., ci+1 =
· · · = cm = 0. Then we have

~vi = −c1
ci
~v1 − · · · − ci−1

ci
~vi−1,

and ~vi is redundant. Thus the theorem is proved. ⊓⊔
Theorem 7. We consider ~v1, . . . , ~vm in a subspace V of Rn. Then, ~v1, . . . , ~vm
form a basis of V if and only if any ~v ∈ V can be expressed uniquely as a
linear combination

~v = c1~v1 + · · ·+ cm~vm,

where c1, . . . , cm are constants.

Proof. (⇒) Let us save this for homework.
(⇐) Since ~0 ∈ V , there exist c1, . . . , cm such that

c1~v1 + · · ·+ cm~vm = ~0.

Since this representation is unique and the trivial relation with c1 = · · · =
cm = 0 satisfies the above relation, we have

c1 = · · · = cm = 0.

Therefore ~v1, . . . , ~vm are linearly independent, and they form a basis of V . ⊓⊔
Let us consider an n×m matrix A = [~v1 · · ·~vm]. For ~x ∈ ker(A) we have

[

~v1 · · · ~vm

]









x1

...

xm









= ~0 ⇔ x1~v1 + · · ·+ xm~vm = ~0.
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That is, the column vectors of A are linearly independent if and only if
ker(A) = {~0}. In this case, there is no free variable and rank(A) = m. This
condition implies m ≤ n. Indeed, ~v1, . . . , ~vm cannot be linearly independent
when m > n.

Example 23. Consider ~v1, ~v2, ~v3 ∈ R
2 (m = 3, n = 2, and m > n). Let us

suppose ~v1 =

[

1

3

]

, ~v2 =

[

2

4

]

. Then any vector ~v3 is redundant.

——–

Let us summarize equivalent statements for linear independence.

~v1, . . . , ~vm ∈ R
n are linearly independent

⇔ None of ~v1, . . . , ~vm is redundant

⇔ There doesn’t exist any ~vi such that ~vi is a linear combination of

~v1, . . . , ~vi−1, ~vi+1, . . . , ~vm

⇔ c1~v1 + · · ·+ cm~vm = ~0 holds only when c1 = · · · = cm = 0

⇔ ker([~v1 · · ·~vm]) = {~0}
⇔ rank([~v1 · · ·~vm]) = m

11 Dimension 12

The word “dimension” was already used on page 2. Now we define the word
as follows.

For a subspace V of Rn, the number of vectors in a basis of V is called
the dimension of V , denoted by dim(V ).

We note that all bases of a subspace V of Rn consist of the same number of
vectors. If dim(V ) vectors in V are linearly independent, then they form a
basis of V .

We have

rank(A) = # of leading 1’s = dim(span(columns of A)).

12 This section is related to Chapter 3 of the textbook.
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Example 24. Consider A =

[

1 2

3 4

]

, which has rref(A) =

[

1 0

0 1

]

and

rank(A) = 2. For V = span(

[

1

3

]

,

[

2

4

]

), we have dim(V ) = 2.

——–

Example 25. Consider A =

[

1 2

3 6

]

, which has rref(A) =

[

1 2

0 0

]

and

rank(A) = 1. Since V = span(

[

1

3

]

,

[

2

6

]

) = span(

[

1

3

]

), we have

dim(V ) = 1.
——–

We note that a basis of im(A), where A = [~v1 · · ·~vm] is an n × m ma-
trix, is formed by some vectors among ~v1, . . . , ~vm (see Theorem 3, im(A) =
span(~v1, . . . , ~vm)) that correspond to the columns of rref(A) containing the
leading 1’s. This fact implies th following theorem.

Theorem 8. For an n×m matrix A,

rank(A) = dim(im(A)).

This gives another definition of the rank.

Theorem 9 (Rank-nullity theorem). For an n×m matrix A,

dim(ker(A)) = m− dim(im(A)).

We call dim(ker(A)) nullity. That is,

(nullity of A)+ (rank of A) = m.

Proof. We will show that dim(ker(A)) is the number of free variables. We
suppose rank(A) = k. Let us consider a linear system A~x = ~0, ~x ∈ ker(A).
Noting that ker(A) = ker(rref(A)) (by the way, im(A) 6= im(rref(A)) in
general), we see that there are m− k free variables. The solution vector ~x is
written as

~x = t1 ~w1 + · · ·+ tm−k ~wm−k,

where t1, . . . , tm−k are constants and ~w1, . . . , ~wm−k form a basis of ker(A).
Thus,

dim(ker(A)) = m− k = m− rank(A).

Together with the previous theorem, the proof is completed. ⊓⊔
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Example 26. Let us find bases of im(A) and ker(A), where

A =
[

~v1 ~v2 ~v3 ~v4 ~v5

]

=











1 2 0 1 2

1 2 0 2 3

1 2 0 3 4

1 2 0 4 5











.

We see that ~v2, ~v3, ~v5 are redundant because

~v2 = 2~v1, ~v3 = ~0, ~v5 = ~v1 + ~v4.

Since ~v1, ~v4 are linearly independent and

im(A) = span(~v1, ~v2, ~v3, ~v4, ~v5) = span(~v1, ~v4),

the vectors ~v1, ~v4 form a basis of im(A).
We can generate vectors in ker(A) using the redundant vectors ~v2, ~v3, ~v5.

Since

−2~v1 + ~v2 =
[

~v1 ~v2

]

[

−2

1

]

=
[

~v1 · · · ~v5

]

















−2

1

0

0

0

















= ~0,

~v3 =
[

~v1 · · · ~v5

]

















0

0

1

0

0

















= ~0,

and

−~v1−~v4+~v5 =
[

~v1 ~v4 ~v5

]







−1

−1

1






=
[

~v1 · · · ~v5

]

















−1

0

0

−1

1

















= ~0,

we have A~w2 = ~0, A~w3 = ~0, A~w5 = ~0, where



MATH417 25

~w2 =

















−2

1

0

0

0

















, ~w3 =

















0

0

1

0

0

















, ~w5 =

















−1

0

0

−1

1

















.

Note that ~w2, ~w3, ~w5 belong to ker(A). Moreover they are linearly inde-
pendent (the components of ~wi are zero below the ith component). Since
there are three free variables, they span ker(A). Indeed, dim(ker(A)) =
m − dim(im(A)) = 5 − 2 = 3. Thus the three vectors ~w2, ~w3, ~w5 form a
basis of ker(A).
——–

A basis of the image of a matrix A is formed by linearly independent
column vectors of A, and a basis of the kernel of A is formed by the vectors
generated from redundant column vectors in A.

Theorem 10. The vectors ~v1, . . . , ~vn ∈ R
n form a basis of Rn if and only if

the matrix [~v1 · · ·~vn] is invertible.

Proof. According to Theorem 7, the vectors ~v1, . . . , ~vn form a basis of Rn if
and only if each ~b ∈ R

n can be uniquely written as

~b = c1~v1 + · · ·+ cn~vn =
[

~v1 · · · ~vn

]









c1
...

cn









.

In order for this system to have a unique solution, the matrix [~v1 · · ·~vn] must
be invertible. ⊓⊔

At this point we can add three more equivalent statements to invertibility
(5):

An n× n matrix A is invertible

⇔ The column vectors of A form a basis of Rn

⇔ span(the column vectors of A) = R
n

⇔ The column vectors of A are linearly independent (6)
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12 Orthonormal bases 13

Two vectors ~v, ~w ∈ R
n are perpendicular or orthogonal if

~v · ~w = v1w1 + · · ·+ vnwn = 0.

A vector ~x ∈ R
n is orthogonal to a subspace V of Rn if ~x ·~v = 0 for all ~v ∈ V .

The length of ~v ∈ R
n is

‖~v‖ =
√
~v · ~v =

√

v21 + · · ·+ v2n.

The length is also called the magnitude or norm. For a vector ~v, we consider

~u =
~v

‖~v‖ .

We have ‖~u‖ = 1 and the vector ~u is a unit vector parallel to ~v.

The vectors ~u1, . . . , ~um ∈ R
n are orthonormal if

~ui · ~uj = δij .

Here δij is called the Kronecker delta and

δij =

{

1 if i = j,

0 if i 6= j.

Example 27. Let ~e1, ~e2, ~e3 be the standard vectors:

~e1 =







1

0

0






, ~e2 =







0

1

0






, ~e3 =







0

0

1






.

We have ~ei · ~ej = δij (i, j = 1, 2, 3).
——–

Example 28. Consider

~u1 =

[

cos θ

sin θ

]

, ~u2 =

[

− sin θ

cos θ

]

.

13 This section is related to Chapter 5 of the textbook.
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We have ‖~u1‖ = ‖~u2‖ = 1 and ~u1 · ~u2 = 0, and the vectors ~u1, ~u2 are
orthonormal.
——–

Theorem 11. Orthonormal vectors ~u1, . . . , ~um ∈ R
n are linearly indepen-

dent.

Proof. Consider the linear combination

c1~u1 + · · ·+ cm~um = ~0,

where c1, . . . , cm are scalars. We form the dot product with ~ui:

c1~u1 · ~ui + · · ·+ cm~um · ~ui = ~0 · ~ui.

Since ~u1, . . . , ~um are orthonormal, we obtain

ci = 0.

Since this holds for all i = 1, . . . ,m, we obtain c1 = · · · = cm = 0. That is,
~u1, . . . , ~um are linearly independent. ⊓⊔

Theorem 12. Orthonormal vectors ~u1, . . . , ~un ∈ R
n form a basis of Rn.

Proof. Since n vectors ~u1, . . . , ~un are linearly independent, they form a basis
of Rn. ⊓⊔

Theorem 13 (Orthogonal projection). For ~x ∈ R
n and a subspace V of

R
n, we can uniquely write

~x = ~x‖ + ~x⊥,

where ~x‖ ∈ V , and ~x⊥ is perpendicular to V . The vector ~x‖ = projV (~x) is
called the orthogonal projection of ~x onto V .

Theorem 14. If V is a subspace of Rn with an orthonormal basis ~u1, . . . , ~um,
then for all ~x ∈ R

n

projV (~x) = (~u1 · ~x)~u1 + · · ·+ (~um · ~x)~um.

Proof. With some scalars c1, . . . , cm we can write

~x‖ = c1~u1 + · · ·+ cm~um.

Since ~x⊥ is perpendicular to V , we have ~ui · ~x⊥ = ~ui · (~x− ~x‖) = 0 and

~ui · ~x− ci = 0.

⊓⊔

Remark 6. Recall projL(~x) = (~u · ~x)~u in the two-dimensional case (4).
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The above theorem implies that for an orthonormal basis ~u1, . . . , ~un of Rn,
we have

~x = (~u1 · ~x)~u1 + · · ·+ (~un · ~x)~un, ~x ∈ R
n.

Consider a subspace V of Rn. The set of ~x⊥, i.e.,

{~x ∈ R
n : ~v · ~x = 0 for all ~v ∈ V }

is called the orthogonal complement V ⊥ of V .

Theorem 15. Let us write projV (~x) = A~x, where V is a subspace of R
n.

Then,
V ⊥ = ker(A).

Moreover, V ⊥ is a subspace of Rn, and V ∩ V ⊥ = {~0}.
Proof. We note that V = im(A). We have projV (~x) = ~0 if ~x ∈ ker(A).
Therefore, for any such ~x

~x = ~x‖ + ~x⊥ = ~x⊥.

Thus V ⊥ = ker(A). Because the kernel is a subspace, V ⊥ is a subspace of
R

n. Let us suppose there exists ~x ∈ R
n such that ~x ∈ V and ~x ∈ V ⊥. Since

~x ∈ V ⊥, we have ~v · ~x = 0 for all ~v ∈ V , and in particular ~x · ~x = ‖~x‖2 = 0.
That is, ~x = ~0. ⊓⊔
Example 29. For example, V is a line through the origin in R

2 or R3, or a plane
through the origin in R

3. Let A be the matrix of the orthogonal projection
onto V . Then for any ~x we have A~x = ~x‖, which implies V = im(A). We
note that A~x‖ = ~x‖. Since A~x⊥ = A(~x − ~x‖) = ~0, the vector ~x⊥ belongs to
ker(A). The set of ~x⊥ is V ⊥. Hence V ⊥ = ker(A).
——–

Theorem 16 (Rank-nullity theorem). We have

dim(V ) + dim(V ⊥) = dim(Rn) = n.

We also have
(

V ⊥)⊥ = V.

Proof. We use the rank-nullity theorem for A~x = projV (~x) from R
n to R

n:

dim(im(A)) + dim(ker(A)) = n.

Note that im(A) = V and ker(A) = V ⊥. We note that V ⊆
(

V ⊥)⊥. But we

have dim(V ⊥) + dim(
(

V ⊥)⊥) = n, which implies dim(V ) = dim(
(

V ⊥)⊥).

Therefore
(

V ⊥)⊥ = V . ⊓⊔
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13 Gram-Schmidt process 14

Consider a subspace V of R
n with dim(V ) = m. Let us construct an or-

thonormal basis of V , ~u1, . . . , ~um from a given basis ~v1, . . . , ~vm of V .

Step 1

~u1 =
1

‖~v1‖
~v1.

Step 2

We write ~v2 = ~v
‖
2 + ~v⊥2 , where

~v
‖
2 = proj~u1

(~v2) = (~u1 · ~v2)~u1,

and
~v⊥2 = ~v2 − ~v

‖
2 = ~v2 − (~u1 · ~v2)~u1.

Step 3

~u2 =
1

‖~v⊥2 ‖
~v⊥2 .

Step 4

Repeat Step 2 and Step 3. Note that when we write ~v3 = ~v
‖
3 + ~v⊥3 ,

~v
‖
3 = proj(~u1,~u2)(~v3) = (~u1 · ~v3)~u1 + (~u2 · ~v3)~u2.

In general we have (j ≥ 2)

~v
‖
j = proj(~u1,...,~uj−1)(~vj) = (~u1 · ~vj)~uj + · · ·+ (~uj−1 · ~vj)~uj−1.

Example 30. Consider a plane V spanned by

~v1 =

[

1

3

]

, ~v2 =

[

2

4

]

.

14 This section is related to Chapter 5 of the textbook.
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That is, any ~v ∈ V is expressed as ~v = c1~v1 + c2~v2 with some scalars c1, c2.
Let us obtain an orthonormal basis ~u1, ~u2 of V .

We first obtain

~u1 =
1√
10

[

1

3

]

.

Next we compute ~v
‖
2 as

~v
‖
2 =

(

1√
10

[

1

3

]

·
[

2

4

])

1√
10

[

1

3

]

=
7

5

[

1

3

]

.

Thus we have

~v⊥2 =

[

2

4

]

− 7

5

[

1

3

]

=
1

5

[

3

−1

]

.

Finally we obtain

~u2 =
1√
10/5

1

5

[

3

−1

]

=
1√
10

[

3

−1

]

.

We can readily check that

‖~u1‖ = ‖~u2‖ = 1, ~u1 · ~u2 = 0.

——–

14 Orthogonal matrices 15

A linear transformation T from R
n to R

n is said to be orthogonal if

‖T (~x)‖ = ‖~x‖ for all ~x ∈ R
n.

Then the matrix A of T is called an orthogonal matrix.

Example 31. Let us consider the matrix A of the counterclockwise rotation
T in R

2 through angle θ. We have

T (~x) = A~x =

[

cos θ − sin θ

sin θ cos θ

]

~x.

15 This section is related to Chapter 5 of the textbook.
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The linear transformation T is orthogonal and A is an orthogonal matrix.
Indeed,

‖T (~x)‖ =

∥

∥

∥

∥

∥

[

x1 cos θ − x2 sin θ

x1 sin θ + x2 cos θ

]∥

∥

∥

∥

∥

=
√

(x1 cos θ − x2 sin θ)2 + (x1 sin θ + x2 cos θ)2

=
√

x2
1 + x2

2 = ‖~x‖.

——–

Theorem 17. An n × n matrix A is orthogonal if and only if the column
vectors of A form an orthonormal basis of Rn.

Proof. (⇒) Let us write the column vectors as ~v1, . . . , ~vn, where A =
[~v1 · · ·~vn]. We note that ~vi = A~ei (i = 1, . . . , n). First we observe that

‖A~ei‖ = ‖~ei‖ = 1.

We also have

‖A~ei+A~ej‖2 = ‖A(~ei+~ej)‖2 = ‖~ei+~ej‖2 = ‖~ei‖2+‖~ej‖2 = ‖A~ei‖2+‖A~ej‖2.

By the Pythagorean theorem, A~e1, A~e2, . . . , A~en are orthonormal.
(⇐) We have

‖A~x‖ =

∥

∥

∥

∥

∥

∥

∥

∥

[

~v1 · · · ~vn

]









x1

...

xn









∥

∥

∥

∥

∥

∥

∥

∥

= ‖x1~v1 + · · ·+ xn~vn‖
= [(x1~v1 + · · ·+ xn~vn) · (x1~v1 + · · ·+ xn~vn)]

1/2

=
(

x2
1 + · · ·+ x2

n

)1/2

= ‖~x‖.

⊓⊔
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15 Transpose 16

The transpose AT of A is a matrix such that

{AT }ij = Aji.

Example 32.
[

1 2 3

4 5 6

]T

=







1 4

2 5

3 6






.

——–

• A is said to be symmetric if AT = A.
• A is said to be skew-symmetric if AT = −A.

There are the following properties.

• (A+B)T = AT +BT ,
• (kA)T = kAT ,
• (AB)T = BTAT ,
• rank(AT ) = rank(A),
• (AT )−1 = (A−1)T .

The last property can be understood from the fact that AA−1 = In and
(AA−1)T = (A−1)TAT = In.

If the columns ~v1, . . . , ~vn of A are orthonormal, then we have

ATA =









~vT1
...

~vTn









[

~v1 · · · ~vn

]

=











1

1

1

1











= In.

For an n× n matrix, we have the following equivalent statements.

A is an n× n orthogonal matrix

⇔ ‖A~x‖ = ‖~x‖ for all ~x ∈ R
n

⇔ The columns of A form an orthonormal basis of Rn

⇔ ATA = In

⇔ A−1 = AT

16 This section is related to Chapter 5 of the textbook.
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Example 33. Recall the rotation in the x-y plane through θ is represented by

Rθ =

[

cos θ − sin θ

sin θ cos θ

]

.

We have
R−1

θ = R−θ = RT
θ .

——–

16 Least squares 17

Let A = [~v1 · · ·~vm] be an n×m matrix.

Theorem 18.
ker(AT ) = (im(A))

⊥
.

Proof. The image of A is a subspace V of Rn.

V ⊥ = {~x ∈ R
n : ~vi · ~x = 0, i = 1, . . . ,m}

=















~x ∈ R
n :









~vT1
...

~vTm









~x =









0
...

0























=
{

~x ∈ R
n : AT~x = ~0

}

= ker(AT ).

⊓⊔

Theorem 19.
ker(A) = ker(ATA).

Proof. (i) If A~x = ~0, then ATA~x = ~0. Therefore ker(A) ⊆ ker(ATA). (ii) If

ATA~x = ~0, then A~x ∈ ker(AT ). However ker(AT ) = (im(A))
⊥
. Of course,

A~x ∈ im(A). Hence A~x = ~0. This means ~x ∈ ker(A) and ker(A) ⊇ ker(ATA).
By (i) and (ii), we obtain ker(A) = ker(ATA). ⊓⊔

Theorem 20. If ker(A) = {~0}, then ATA is invertible.

Proof. The matrix ATA is an m × m square matrix. Using Theorem 19,
ker(ATA) = {~0}. Thus ATA is invertible. ⊓⊔

17 This section is related to Chapter 5 of the textbook.
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Theorem 21 (Orthogonal projection). For ~x ∈ R
n and a subspace V of

R
n,

‖~x− projV (~x)‖ ≤ ‖~x− ~v‖
for all ~v ∈ V .

Consider an inconsistent system (there is no solution) A~x = ~b. That is,
~b /∈ im(A). We look for an approximate solution ~x∗ by minimizing the error

‖~b−A~x‖.

Consider A~x = ~b with an n × m matrix A. Then ~x∗ ∈ R
m is called a

least-squares solution if

‖~b−A~x∗‖ ≤ ‖~b−A~x‖

for all ~x ∈ R
m.

Remark 7. If A~x = ~b is consistent, then ~x∗ is a solution.

We can find ~x∗ as follows.

‖~b−A~x∗‖ ≤ ‖~b−A~x‖ for all ~x ∈ R
m

⇔ A~x∗ = projV (
~b), V = im(A)

⇔ ~b = ~b‖ +~b⊥ = projV (
~b) +~b⊥, ~b− projV (

~b) ∈ V ⊥, and ~b−A~x∗ ∈ ker(AT )

⇔ AT
(

~b−A~x∗
)

= ~0

⇔ ATA~x∗ = AT~b

The equation ATA~x∗ = AT~b is said to be the normal equation of A~x = ~b. If
ker(A) = {~0}, then

~x∗ =
(

ATA
)−1

AT~b.

Remark 8. The matrix A+ =
(

ATA
)−1

AT is called the pseudoinverse.

Example 34. Prof. M eats wi (lb) ice cream and ws (lb) steak every month
and his weight increases by ∆w (lb).

wi ws ∆w

May 1 4 2

June 1 8 4

July 1 12 5

August 3 8 ?

Predict ∆w for August by finding a formula ciwi + csws = ∆w.
Let us write A~x = ~b, where
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A =







1 4

1 8

1 12






, ~x =

[

ci

cs

]

, ~b =







2

4

5






.

We have

ATA =

[

1 1 1

4 8 12

]







1 4

1 8

1 12






=

[

3 24

24 224

]

.

Thus,

(ATA)−1 =
1

96

[

224 −24

−24 3

]

.

We obtain

~x∗ =
1

96

[

224 −24

−24 3

][

1 1 1

4 8 12

]

~b

=
1

96

[

128 32 −64

−12 0 12

]







2

4

5







=
1

96

[

64

36

]

=

[

2/3

3/8

]

.

This means
2

3
wi +

3

8
ws = ∆w.

Finally we obtain

∆w (Aug) =
2

3
· 3 + 3

8
· 8 = 5 lb.

——–

Remark 9. We can see the relation to linear regression as follows. Let us use
the above example. For simplicity we assume wi = 1 for every month. We
will find

c∗i + c∗sws = ∆w.

We write
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A =







1 a1

1 a2

1 a3






, ~b =







b1

b2

b3






.

We then obtain

[

c∗i
c∗s

]

= (ATA)−1AT~b =







[

1 1 1

a1 a2 a3

]







1 a1

1 a2

1 a3













−1
[

1 1 1

a1 a2 a3

]







b1

b2

b3







=

[

3
∑3

i=1 ai
∑3

i=1 ai
∑3

i=1 a
2
i

]−1 [
∑3

i=1 bi
∑3

i=1 aibi

]

=
1

3
(

∑3
i=1 a

2
i

)

−
(

∑3
i=1 ai

)2

[

∑3
i=1 a

2
i −∑3

i=1 ai

−∑3
i=1 ai 3

][

∑3
i=1 bi

∑3
i=1 aibi

]

.

Therefore we obtain

c∗s =
3
(

∑3
i=1 aibi

)

−
(

∑3
i=1 ai

)(

∑3
i=1 bi

)

3
(

∑3
i=1 a

2
i

)

−
(

∑3
i=1 ai

)2 =

∑3
i=1(ai − ā)(bi − b̄)
∑3

i=1(ai − ā)2
,

c∗i =

(

∑3
i=1 a

2
i

)(

∑3
i=1 bi

)

−
(

∑3
i=1 ai

)(

∑3
i=1 aibi

)

3
(

∑3
i=1 a

2
i

)

−
(

∑3
i=1 ai

)2 = b̄− c∗s ā,

where ā = (1/3)
∑3

i=1 ai and b̄ = (1/3)
∑3

i=1 bi. These formulae appear in
linear regression. Recall a1 = 4, a2 = 8, a3 = 12, b1 = 2, b2 = 4, b3 = 5. The
above formulae give c∗i = 2/3 and c∗s = 3/8.

17 Determinants 18

Let us consider a n× n matrix A. We can compute the reduced row-echelon
form rref(A) with elementary row operations:

A → B1 → B2 → · · · → rref(A).

If rref(A) 6= In, then
det(A) = 0. (7)

This implies that a square matrix A is invertible if and only if det(A) 6= 0. We
can also say that if column vectors are not linearly independent, det(A) = 0.

18 This section is related to Chapter 6 of the textbook.
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Hereafter we assume rref(A) = In.

det(In) = 1.

The determinant of A is obtained as follows. Suppose we divide some row by
k when moving from Bi−1 to Bi. Then,

det(Bi−1) = k det(Bi).

If we swap two rows, then

det(Bi−1) = − det(Bi).

The determinant doesn’t change by addition or subtraction of a scalar mul-
tiple of one row. We obtain

det(A) = (−1)# of swaps
∏

k.

Example 35. For A =

[

1 2

3 4

]

, we know that det(A) = 1 · 4 − 2 · 3 = −2.

Let us obtain det(A) using the above method.

[

1 2

3 4

]

2nd−3·1st−−−−−−−−→
[

1 2

0 −2

]

2nd/(−2)−−−−−−−→
[

1 2

0 1

]

1st−2·2nd−−−−−−−−→
[

1 0

0 1

]

.

We have

det(A) = (−1)# of swaps
∏

k = (−1)0 (−2) = −2.

——–

Example 36. Let us calculate det(A), where

A =







1 2 3

2 4 5

3 4 5






.

We have
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





1 2 3

2 4 5

3 4 5







2nd−2·1st and 3rd−3·1st−−−−−−−−−−−−−−−−−−−−→







1 2 3

0 0 −1

0 −2 −4







2nd/(−1) and 3rd/(−2)−−−−−−−−−−−−−−−−−−−→







1 2 3

0 0 1

0 1 2







interchange 2nd and 3rd−−−−−−−−−−−−−−−−−−−→







1 2 3

0 1 2

0 0 1







1st−2·2nd−−−−−−−−→







1 0 −1

0 1 2

0 0 1







1st+3rd and 2nd−2·3rd−−−−−−−−−−−−−−−−−−−→







1 0 0

0 1 0

0 0 1






.

Hence we obtain

det(A) = (−1)# of swaps
∏

k = (−1)1 (−1)(−2) = −2.

——–

From the above examples we see the following theorem.

Theorem 22. The determinant of an (upper or lower) triangular matrix is
the product of the diagonal entries of the matrix. In particular, the determi-
nant of a diagonal matrix is the product of its diagonal entries.

For 3× 3 matrices, there is a well-known formula called Sarrus’s rule.

The determinant of the matrix A, where







a11 a12 a13

a21 a22 a23

a31 a32 a33






,

is obtained as

det(A) = a11a22a33+a12a23a31+a13a21a32−a13a22a31−a11a23a32−a12a21a33.
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Example 37. Let us calculate det(A), where

det







1 2 3

2 4 5

3 4 5






= 1 · 4 · 5 + 2 · 5 · 3 + 3 · 2 · 4− 3 · 4 · 3− 1 · 5 · 4− 2 · 2 · 5

= 20 + 30 + 24− 36− 20− 20 = −2.

——–

Let us consider an n× n matrix A, where

A =









a11 · · · a1n
...

...

an1 · · · ann









.

There is no useful formula as Sarrus’s rule if n ≥ 4. But we have the following
theorem.

Theorem 23 (Laplace expansion (cofactor expansion)). We can com-
pute det(A) by Laplace expansion down the (any) jth column

det(A) =
n
∑

i=1

(−1)i+jaij det(Aij),

or by Laplace expansion along the (any) ith row

det(A) =
n
∑

j=1

(−1)i+jaij det(Aij).

The matrix Aij is the (n − 1) × (n − 1) matrix obtained by omitting
the ith row and the jth column of an n× n matrix A. A minor of A is
det(Aij), and (−1)i+j det(Aij) is called a cofactor of A.

Example 38. Let us use the Laplace expansion down the 1st column.

det

[

1 2

3 4

]

= (−1)1+1a11 det(A11) + (−1)2+1a21 det(A21)

= 1 · det(4)− 3 · det(2) = 1 · 4− 3 · 2 = −2.

——–
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Example 39. Sarrus’s rule can be written as

det(A) = a11 det

[

a22 a23

a32 a33

]

−a21 det

[

a12 a13

a32 a33

]

+a31 det

[

a12 a13

a22 a23

]

.

——–

There are the following properties for determinants.

• det(AT ) = det(A),
• det(AB) = det(A) det(B),
• det(A−1) = 1/det(A).

The last property is shown as follow. We take determinants of In = AA−1.
The left-hand side is det(In) = 1. The right-hand side is det(AA−1) =
det(A) det(A−1).

If A is orthogonal (A−1 = AT ), then det(A) = ±1 because

det(A) = det(AT ) = det(A−1) =
1

det(A)
.

Let us consider the following calculations. The first one is

det

[

a b

c d

]

transpose
= det

[

a c

b d

]

swap
= − det

[

b d

a c

]

transpose
= − det

[

b a

d c

]

,

and the second one is

det

[

a b+ b′

c d+ d′

]

= a det

[

1 b+b′

a

c d+ d′

]

= a det

[

1 b+b′

a

0 d+ d′ − c b+b′

a

]

= a
[

d+ d′ − (b+ b′)
c

a

]

det

[

1 b+b′

a

0 1

]

= a(d+ d′)− (b+ b′)c

= ad− bc+ ad′ − b′c

= det

[

a b

c d

]

+ det

[

a b′

c d′

]

.

In general we have the following properties about column vectors.
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• Alternating:

det([· · ·~vi · · ·~vj · · · ]) = − det([· · ·~vj · · ·~vi · · · ]),

• Multilinear:

det([· · · (α~vi + β~vi′) · · · ]) = α det([· · ·~vi · · · ]) + β det([· · ·~vi′ · · · ]).

The above two relations imply that if there is a redundant vector, then the
determinant is zero.

Using the multilinearity we can derive the Laplace expansion as follows.
Let us use the Laplace expansion down the 1st column for a 3× 3 matrix.

det







a11 a12 a13

a21 a22 a23

a31 a32 a33







= a11 det







1 a12 a13

0 a22 a23

0 a32 a33






+ a21 det







0 a12 a13

1 a22 a23

0 a32 a33






+ a31 det







0 a12 a13

0 a22 a23

1 a32 a33







= a11 det







1 a12 a13

0 a22 a23

0 a32 a33






− a21 det







1 a22 a23

0 a12 a13

0 a32 a33






+ a31 det







1 a32 a33

0 a12 a13

0 a22 a23







= a11 det

[

a22 a23

a32 a33

]

− a21 det

[

a12 a13

a32 a33

]

+ a31 det

[

a12 a13

a22 a23

]

= (−1)1+1a11 det(A11) + (−1)2+1a21 det(A21) + (−1)3+1a31 det(A31).

Using determinants and cofactors we can write the inverse of an n × n
matrix A.

Theorem 24. For an invertible n× n matrix A,

A−1 =
1

det(A)
adj(A),

where adj(A) is the classical adjoint of A defined by

adj(A) =









(−1)1+1 det(A11) (−1)1+2 det(A21) · · ·
(−1)2+1 det(A12) (−1)2+2 det(A22) · · ·

...









.
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Note that {adj(A)}ij = (−1)i+j det(Aji).

Example 40. The inverse of A =

[

a b

c d

]

is

A−1 =
1

det(A)

[

(−1)1+1 det(A11) (−1)1+2 det(A21)

(−1)2+1 det(A12) (−1)2+2 det(A22)

]

=
1

ad− bc

[

a −b

−c d

]

.

——–

18 Geometrical interpretations of determinants 19

Let us consider geometrical interpretations of determinants. We begin with
a 2× 2 matrix with linearly independent column vectors:

A =
[

~v1 ~v2

]

=

[

a b

c d

]

.

Let us recall the Gram-Schmidt process and construct orthonormal vectors
~u1, ~u2. We have

~u1 =
~v1
‖~v1‖

, ~u2 =
~v⊥2
‖~v⊥2 ‖

,

where
~v⊥2 = ~v2 − proj~u1

(~v2) = ~v2 − (~u1 · ~v2)~u1.

We can write the matrix A as

A =
[

~v1 ~v2

]

= QR =
[

~u1 ~u2

]

[

‖~v1‖ ~u1 · ~v2
0

∥

∥~v⊥2
∥

∥

]

.

Indeed this is called the QR factorization, where Q = [~u1~u2] is an orthogonal
matrix and R is an upper triangular matrix with positive diagonal entries.

We have

19 This section is related to Chapter 6 of the textbook.
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√

det(ATA) =
√

(det(A))2 = |det(A)|
= |det(Q)| |det(R)|
= |det(R)|
= ‖~v1‖

∥

∥~v⊥2
∥

∥ .

This is the area of the parallelogram defined by ~v1, ~v2.

Theorem 25. Consider an n × m matrix A = [~v1 · · ·~vm], where
~v1, . . . , ~vm ∈ R

n.
√

det(ATA) is the m-volume of the m-parallelepiped

defined by ~v1, . . . , ~vm. We note that
√

det(ATA) = | det(A)| if m = n.

Proof. By using the Gram-Schmidt process we obtain the QR factorization

A = QR =
[

~u1 · · · ~um

]













‖~v1‖ ~u1 · ~v2 · · · ~u1 · ~vm
∥

∥~v⊥2
∥

∥ · · · ~u2 · ~vm
. . .

...
∥

∥~v⊥m
∥

∥













.

Thus we have
√

det(ATA) =
√

det(RTQTQR) =
√

det(RT ) det(QT ) det(Q) det(R)

=
√

(det(R))2

= |det(R)|
= ‖~v1‖

∥

∥~v⊥2
∥

∥ · · ·
∥

∥~v⊥m
∥

∥ .

⊓⊔

Example 41. The determinant | det(A)| = | det[~v1~v2~v3]| = ‖~v1‖
∥

∥~v⊥2
∥

∥

∥

∥~v⊥3
∥

∥ is
the volume of the parallelepiped.
——–

Consider a linear transformation T (~x) = A~x from R
2 to R

2. Let Ω be the
parallelogram defined by ~v1 and ~v2. The parallelogram defined by A~v1 and
A~v2 is denoted by T (Ω). If we define B = [~v1~v2], then

area of Ω = | det(B)|,

and

area of T (Ω) =
∣

∣

∣det
[

A~v1 A~v2

]∣

∣

∣ = | det(AB)| = | det(A)| | det(B)|.
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We obtain
area of T (Ω)

area of Ω
= | det(A)|.

The ratio on the left-hand side is called the expansion factor.

Theorem 26. For a linear transformation T (~x) = A~x from R
n to R

n,
| det(A)| is the expansion factor of T on n-parallelepipeds. That is,

V (A~v1, . . . , A~vn) = | detA|V (~v1, . . . , ~vn),

for all ~v1, . . . , ~vn in R
n.

Example 42. The rotation matrix Ry(θ) about the y-axis in space is given by

Ry(θ) =







cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ






.

Since det(Ry(θ)) = 1, this matrix doesn’t change the volume.
——–

19 Eigenvalues and eigenvectors 20

Let us suppose the relation
A~v = λ~v,

holds for an n×n matrix A, a scalar λ, and a nonzero vector ~v. λ is said to be
an eigenvalue and ~v is said to be the eigenvector associated with λ. A basis
~v1, . . . , ~vn of Rn is called an eigenbasis for A if these vectors are eigenvectors
of A.

Theorem 27. For an n×n matrix A, a scalar λ is an eigenvalue of A
if and only if

fA(λ) = det(A− λIn) = 0.

Here fA(λ) is the characteristic polynomial, and fA(λ) = 0 is called the
characteristic equation or the secular equation.

20 This section is related to Chapter 7 of the textbook.
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Proof.

A~v = λ~v (~v 6= ~0)

⇔ A~v − λ~v = ~0

⇔ (A− λIn)~v = ~0

⇔ ker(A− λIn) 6= {~0}
⇔ A− λIn is not invertible

⇔ det(A− λIn) = 0.

⊓⊔

Remark 10. If λ = 0, then A is noninvertible.

A is invertible ⇔ eigenvalue λ 6= 0.

Together with (7), we can add two more equivalent statements to (5) and
(6):

An n× n matrix A is invertible

⇔ det(A) 6= 0

⇔ 0 is not an eigenvalue of A (8)

Example 43. Consider A =

[

a11 a12

a21 a22

]

(n = 2). We have

fA(λ) = det(A− λI2) = det(

[

a11 − λ a12

a21 a22 − λ

]

)

= (a11 − λ)(a22 − λ)− a12a21

= λ2 − (a11 + a22)λ+ a11a22 − a12a21

= λ2 − tr(A)λ+ det(A).

Here, tr(A) is the sum of the diagonal entries of a square matrix A and called
the trace of A.
——–

Remark 11. In general, fA(λ) of an n×n matrix A is a polynomial of degree
n:

fA(λ) = (−λ)n + tr(A)(−λ)n−1 + · · ·+ det(A).

That is, there are at most n eigenvalues.

Example 44. Let us find the eigenvalues of A =







2 3 4

0 3 4

0 0 4






. We have
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det(A− λI3) = det







2− λ 3 4

0 3− λ 4

0 0 4− λ






= (2− λ)(3− λ)(4− λ) = 0.

Thus we obtain
λ = 2, 3, 4.

The eigenvalues of a triangular matrix are its diagonal entries.
——–

An eigenvalue λ0 of A has algebraic multiplicity k if

fA(λ) = (λ0 − λ)kg(λ),

for some polynomial g(λ) with g(λ0) 6= 0.

Example 45. Let us find the eigenvalues of A with their algebraic multiplici-

ties, where A =







1 1 1

1 1 1

1 1 1






. We have

fA(λ) = det(A− λI3) = det







1− λ 1 1

1 1− λ 1

1 1 1− λ






= λ2(3− λ).

Therefore we obtain

λ =

{

0 with algebraic multiplicity 2,

3 with algebraic multiplicity 1.

——–

Theorem 28. If an n× n matrix A has eigenvalues λ1, . . . , λn, then

det(A) = λ1λ2 · · ·λn, tr(A) = λ1 + λ2 + · · ·+ λn.

Proof.

fA(λ) = det(A− λIn) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

On the other hand,

fA(λ) = (−λ)n + tr(A)(−λ)n−1 + · · ·+ det(A).

⊓⊔



MATH417 47

Example 46. For the matrix A =







2 3 4

0 3 4

0 0 4






, we have

det(A−λI3) = (2−λ)(3−λ)(4−λ) = (−λ)3+(2+3+4)(−λ)2+(2·3+3·4+4·2)(−λ)+2·3·4.

——–

Example 47. For the matrix A =







1 1 1

1 1 1

1 1 1






, we have tr(A) = 3,

det(A) = 0, and λ = 0, 0, 3. The characteristic polynomial is obtained as

fA(λ) = λ2(3− λ) = (0− λ)(0− λ)(3− λ).

Hence we obtain

tr(A) = 0 + 0 + 3 = 3, det(A) = 0 · 0 · 3 = 0.

——–

20 Eigenspaces 21

The eigenspace Eλ associated with the eigenvalue λ of an n× n matrix
A is

Eλ = ker(A− λIn) = {~v ∈ R
n : A~v = λ~v}.

The eigenvectors associated with λ are the nonzero vectors in Eλ.

The geometric multiplicity is the dimension of the eigenspace, i.e.,

geometric multiplicity = dim(Eλ) = nullity(A−λIn) = n−rank(A−λIn).

Example 48. Let find geometric multiplicities for A =

[

1 2

−1 4

]

. By find-

ing

21 This section is related to Chapter 7 of the textbook.
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det(A− λI2) = (λ− 2)(λ− 3) = 0,

we obtain λ = 2, 3. Therefore,

E2 = ker(A− 2I2) = ker

[

−1 2

−1 2

]

,

E3 = ker(A− 3I2) = ker

[

−2 2

−1 1

]

.

We obtain

E2 = span(

[

2

1

]

), E3 = span(

[

1

1

]

).

Since dim(E2) = dim(E3) = 1, the geometric multiplicities are 1 and 1. We
note that

∑

λ

dim(Eλ) = 2.

The bases in each eigenspace

[

2

1

]

and

[

1

1

]

form an eigenbasis.

——–

Example 49. Next let find geometric multiplicities for A =

[

1 1

−1 3

]

. By

finding
det(A− λI2) = (λ− 2)2 = 0,

we obtain λ = 2 with algebraic multiplicity 2. Therefore,

E2 = ker(A− 2I2) = ker

[

−1 1

−1 1

]

= span(

[

1

1

]

).

Since dim(E2) = 1, the geometric multiplicity is 1. We note that

∑

λ

dim(Eλ) = 1 < 2.

In this case there is no eigenbasis.
——–

From the above two examples we can understand the following theorems.

Theorem 29. Suppose A is an n×n matrix. If
∑

λ dim(Eλ) < n, then there
is no eigenbasis for A.

Proof. See Theorem 31.
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Theorem 30. If an n × n matrix A has n distinct eigenvalues, then there
exists an eigenbasis for A.

Proof. Let us write A~vi = λi~vi (i = 1, 2, . . . , n). If these eigenvectors are
linearly independent, then they form an eigenbasis. Let us assume there is at
least one redundant eigenvector. Let ~vm be the first redundant vector:

~vm = c1~v1 + · · ·+ cm−1~vm−1,

with some scalars c1, . . . , cm−1. We have

(A− λmIn)~vm = (λ1 − λm)c1~v1 + · · ·+ (λm−1 − λm)cm−1~vm−1 = ~0.

Suppose cm−1 6= 0. By defining

di = − (λi − λm)ci
(λm−1 − λm)cm−1

,

we obtain
~vm−1 = d1~v1 + · · ·+ dm−2~vm−2.

The above relation shows ~vm−1 is redundant. However, this contradicts the
assumption. If cm−1 = 0, we can define di using another nonzero constant ck.
That is, there is no redundant vector, and ~v1, . . . , ~vn are linearly independent.
Moreover these vectors span R

n. Hence they form a basis. ⊓⊔

Even if we don’t have n distinct eigenvalues for an n×n matrix A, we can
have an eigenbasis (Theorem 31 explains when there exists an eigenbasis).

Example 50. Let us find an eigenbasis for A =

[

2 0

0 2

]

. The eigenvalue

λ = 2 and

E2 = ker(A− 2I2) = ker

[

0 0

0 0

]

= span(

[

1

0

]

,

[

0

1

]

).

Therefore

[

1

0

]

and

[

0

1

]

form a basis.

——–

Example 51. Let us find an eigenbasis for A =







1 1 1

1 1 1

1 1 1






. The eigenval-

ues are 0, 0, 3. We obtain
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E0 = ker







1 1 1

1 1 1

1 1 1






= ker







1 1 1

0 0 0

0 0 0






= span(







1

0

−1






,







0

1

−1






),

E3 = ker







−2 1 1

1 −2 1

1 1 −2






= ker







1 0 −1

0 1 −1

0 0 0






= span(







1

1

1






).

The eigenvectors







1

0

−1






,







0

1

−1






, and







1

1

1






form a basis.

——–

Theorem 31. Consider an n×n matrix A with eigenvalues λ1, λ2, . . . .
Suppose we find eigenvectors ~v1, ~v2, . . . , ~vs which form a basis of each
eigenspace Eλ1

, Eλ2
, . . . (i.e., s is the sum of the geometric multiplicities

of λ1, λ2, . . . ). Then these vectors are linearly independent even though
they belong to different eigenspaces. This implies s ≤ n. There exists an
eigenbasis if and only if s = n.

Proof. The proof is similar to the proof of Theorem 30. Let ~vm be the first
redundant vector:

~vm = c1~v1 + · · ·+ cm−1~vm−1,

with some scalars c1, . . . , cm−1. If all ~v1, . . . , ~vs belong to the same eigenspace
Eλm

, they are linearly independent. Hence there is a vector ~vk associated with
λk, which belongs to Eλk

( 6= Eλm
). We have

(A−λmIm)~vm = (λ1−λm)c1~v1+· · ·+(λk−λm)ck~vk+· · ·+(λm−1−λm)cm−1~vm−1 = ~0.

Since λk 6= λm, the above equation is a nontrivial relation among ~v1, . . . , ~vm−1.
This contradicts the assumption. ⊓⊔

21 Diagonalization 22

Consider two n×n matrices A and B. We say that A is similar to B if there
exists an invertible matrix S such that

AS = SB, B = S−1AS.

22 This section is related to Chapter 7 of the textbook.



MATH417 51

An n × n matrix A is said to be diagonalizable if A is similar to a
diagonal matrix D:

S−1AS = D.

Example 52. ConsiderA =

[

1 1

2 2

]

. With S =
[

~v1 ~v2

]

=

[

1 1

−1 2

]

,

we have

S−1AS =

[

0 0

0 3

]

= D.

We note that
A~v1 = 0~v1, A~v2 = 3~v2.

——–

Example 53. Consider A =

[

1 1

0 1

]

. We note that

A

[

1

0

]

= 1

[

1

0

]

.

There is no eigenbasis. Indeed in this case, we cannot find S. That is, A is
not diagonalizable.
——–

Theorem 32. A square matrix A is diagonalizable if and only if there exists
an eigenbasis. If the eigenvalues are all distinct, then A is diagonalizable.

We can diagonalize an n× n matrix A as follows.

Step 1

Solve fA(λ) = det(A− λIn) = 0.

Step 2

Find the eigenspace Eλ = ker(A− λIn) for each λ.



52

Step 3

Determine if A is diagonalizable or not
(

∑

λ dim(Eλ)
?
= n

)

. If eigenvectors

~v1, . . . , ~vn form an eigenbasis, S is obtained as

S =
[

~v1 ~v2 · · · ~vn

]

.

Then we have the relation

S−1AS = D, D =









λ1

. . .

λn









.

We can determine as follows whether a given n × n matrix A is di-
agonalizable. We first find the eigenvalues of A by solving fA(λ) =
det(A − λIn) = 0. Then for each eigenvalue λ, we find a basis of the
eigenspace Eλ = ker(A − λIn). The matrix A is diagonalizable if and
only if the dimensions of the eigenspaces add up to n.

Let us consider powers of a square matrix A. If A is diagonalizable, we
have A = SDS−1, where D is a diagonal matrix. We obtain

At =
(

SDS−1
)t

= SDS−1SDS−1 · · ·SDS−1 = SDtS−1, t = 1, 2, . . . .

Example 54. Let us find
[

−0.5 0.5

−3 2

]∞

.

By solving fA(λ) = 0, where A =

[

− 1
2

1
2

−3 2

]

, we obtain λ = 1, 1
2 . Since

E1 = span(

[

1

3

]

) and E1/2 = span(

[

1

2

]

), we can diagonalize A as A =

SDS−1, where S =

[

1 1

3 2

]

, D =

[

1 0

0 1
2

]

. We obtain

A∞ = SD∞S−1 =

[

1 1

3 2

][

1∞ 0

0
(

1
2

)∞

][

1 1

3 2

]−1

=

[

−2 1

−6 3

]

.

——–
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22 Symmetric matrices 23

In this section, we will consider a (real) symmetric matrix A, which satisfies

AT = A.

Theorem 33. Consider a symmetric matrix A, and two eigenvalues and
eigenvectors,

A~v1 = λ1~v1, A~v2 = λ2~v2, λ1 6= λ2.

Then, ~v1 · ~v2 = 0.

Proof. We note that

~vT1 A~v2 = ~v1 · (A~v2) = ~v1 · (λ2~v2) = λ2~v1 · ~v2.

On the other hand we have

~vT1 A~v2 = ~vT1 A
T~v2 = (A~v1)

T~v2 = (A~v1) · ~v2 = (λ1~v1) · ~v2 = λ1~v1 · ~v2.

By subtraction we obtain

(λ1 − λ2)~v1 · ~v2 = 0.

Therefore, ~v1 · ~v2 = 0. ⊓⊔
Theorem 34. A symmetric n×n matrix A has n real eigenvalues if they are
counted with their algebraic multiplicities.

Proof. See below.

Example 55. We have seen different examples of eigenvalues of symmetric
matrices. For example, in Sec. 20,

λ of

[

2 0

0 2

]

= 2, 2, λ of







1 1 1

1 1 1

1 1 1






= 0, 0, 3.

——–

A matrix A is said to be orthogonally diagonalizable if there exist an
orthogonal matrix S and a diagonal matrix D such that

S−1AS = STAS = D.

23 This section is related to Chapter 8 of the textbook.
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Theorem 35 (Spectral theorem). A matrix A is orthogonally diag-
onalizable if and only if A is symmetric.

Proof. (⇒) There exist an orthogonal S and a diagonal D such that

S−1AS = D or A = SDS−1 = SDST .

Hence,
AT = (SDST )T = SDTST = SDST = A.

Therefore A is symmetric:
AT = A.

(⇐) We consider a symmetric n×nmatrix A. We give a proof by induction

on n. When n = 1, we can set S =
[

1
]

.

Let us assume that the claim is true for n. We will show that it holds for
n+1. With Theorem 34, we pick a real eigenvalue λ and choose an eigenvector
~v1 of length 1 for λ. We can find an orthonormal basis ~v1, ~v2, . . . , ~vn+1 ∈ R

n+1.
Form the orthogonal matrix P = [~v1 · · ·~vn+1], and compute P−1AP . We note
that

• The first column of P−1AP is λ~e1. We note that









~vT1
~v2
...









A
[

~v1 ~v2 · · ·
]

=









~vT1
~v2
...









[

λ~v1 A~v2 · · ·
]

=









λ~v1 · ~v1 ~vT1 A~v2 · · ·
λ~v2 · ~v1 ~vT2 A~v2 · · ·

...









.

• P−1AP = PTAP is symmetric because

(PTAP )T = PTATP = PTAP.

Combining these two statements, we conclude that P−1AP has the block
form

P−1AP =

[

λ 0

0 B

]

,

where B is a symmetric n × n matrix. By the induction hypothesis, B is
orthogonally diagonalizable, i.e.,

Q−1BQ = D,

where Q is an orthogonal n×n matrix and D is a diagonal n×n matrix. Let
us introduce an orthogonal (n+ 1)× (n+ 1) matrix
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R =

[

1 0

0 Q

]

.

We have

R−1

[

λ 0

0 B

]

R =

[

1 0

0 Q−1

][

λ 0

0 B

][

1 0

0 Q

]

=

[

λ 0

0 D

]

.

That is,

R−1P−1APR =

[

λ 0

0 D

]

.

Let us define S = PR. Since P,Q are both orthogonal, for any vector ~x, we
have

‖S~x‖ = ‖P (R~x)‖ = ‖R~x‖ = ‖~x‖.
That is, S is also orthogonal. Finally we obtain

S−1AS =

[

λ 0

0 D

]

.

Thus A is diagonalized and the claim is proved. ⊓⊔

Example 56. Let us diagonalize a symmetric matrix A =

[

2 1

1 0

]

. We have

λ = 1±
√
2 and

E1±
√
2 = span(

[

1±
√
2

1

]

).

By defining

S =
[

~u1 ~u2

]

=





1+
√
2√

4+2
√
2

1−
√
2√

4−2
√
2

1√
4+2

√
2

1√
4−2

√
2



 , D =

[

1 +
√
2 0

0 1−
√
2

]

,

we obtain S−1AS = D. Indeed, ~u1 and ~u2 are orthonormal 24.
——–

Finally we prove Theorem 34.

24 The matrix A must be real symmetric. The matrix A =

[

2i 1

1 0

]

is symmetric.

But since λ = i and Ei = span(

[

1

−i

]

), A is not diagonalizable.
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Proof (Theorem 34). Suppose that there is an eigenvector ~v with the associ-
ated eigenvalue λ = p+ iq is complex25:

A~v = (p+ iq)~v, p, q ∈ R.

We can rewrite the above equation as

(A− pIn)~v = iq~v.

We note that A − pIn is symmetric. It suffices to show that any symmetric
matrix doesn’t have a purely imaginary eigenvalue iq. Let us assume that
there exist an eigenvalue iq and an eigenvector ~v such that

A~v = iq~v.

We have26

(A~v)T~v = A~v · ~v = iq~v · ~v.
On the other hand we obtain

(A~v)T~v = ~vTAT~v = ~vTA~v = ~vTA~v = ~vT iq~v = −iq~vT~v = −iq~v · ~v.

Therefore, iq~v · ~v = −iq~v · ~v. However, ~v · ~v > 0 because ~v 6= ~0. We obtain
q = 0.

The characteristic polynomial fA(λ), which is a polynomial of degree n,
has n complex roots if they are properly counted with their multiplicities
(the fundamental theorem of algebra). Since any eigenvalue of a symmetric
matrix A is real, this means that A has n real eigenvalues. ⊓⊔

25 i is the imaginary unit and i · i = −1.
26 For a complex number z = a + ib (a, b ∈ R), we define its complex conjugate by
z = a− ib.


