Problem Set 4 Due on Fri, Aug 1

1) Consider the following vectors in \mathbb{R}^4 .

$$\vec{u}_1 = \begin{bmatrix} 1/2\\ 1/2\\ 1/2\\ 1/2\\ 1/2 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} 1/2\\ 1/2\\ -1/2\\ -1/2 \end{bmatrix}, \quad \vec{u}_3 = \begin{bmatrix} 1/2\\ -1/2\\ 1/2\\ -1/2 \end{bmatrix}.$$

Can you find a vector \vec{u}_4 in \mathbb{R}^4 such that the vectors $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$ are orthonormal? If so, how many such vectors are there?

2) Find a basis for W^{\perp} , where

$$W = \operatorname{span}\left(\begin{bmatrix} 1\\3\\5\\7 \end{bmatrix}, \begin{bmatrix} 2\\4\\6\\8 \end{bmatrix}\right).$$

- 3) Two subspaces V and W of the same vector space are said to be orthogonal if $\vec{v} \cdot \vec{w} = 0$ for all $\vec{v} \in V$ and $\vec{w} \in W$. Answer True or False. Give a counter example if False.
 - (a) $\ker(A)$ and $\operatorname{im}(A)$ are orthogonal.
 - (b) $\ker(A)$ and the row space (the span of rows of A) are orthogonal.
- 4) Perform the Gram-Schmidt process on the vectors $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 6\\4\\6\\4 \end{bmatrix}$.

5) Find the least-squares solutions \vec{x}^* of the system $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix}, \text{ and } \vec{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$