Problem Set 2 Due on Fri, Jul 11

- 1) Consider two vectors \vec{v}_1 and \vec{v}_2 in \mathbb{R}^3 that are not parallel. Which vectors in \mathbb{R}^3 are linear combinations of \vec{v}_1 and \vec{v}_2 ? Describe the set of these vectors geometrically. Include a sketch in your answer.
- 2) The two column vectors \vec{v}_1 and \vec{v}_2 of a 2×2 matrix A are shown in the figure. Consider the linear transformation $T(\vec{x}) = A\vec{x}$. Sketch the vector $T\begin{pmatrix} 2\\ -1 \end{pmatrix}$.
- O 3) Find the matrix of the reflection in \mathbb{R}^3 about the *xz*-plane.
- 4) Find the matrix of the rotation in \mathbb{R}^3 about the *y*-axis through an angle θ , counterclockwise as viewed from the positive *y*-axis.

5) Compute
$$A^{2014}$$
 when $A = \frac{1}{2} \begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{bmatrix}$.