Problem Set 1 Due on Wed, Jul 2

1) Solve the following systems using Gauss-Jordan elimination.

	$3x + 4y - z = 86x + 8y - 2z = 3 $, (b) $x_1 - 7x_2$	x_3	$ \begin{array}{r} + x_5 = 3 \\ -2x_5 = 2 \\ x_4 + x_5 = 1 \end{array} $,
(c)	$\begin{array}{c c} x_1 + 2x_2 - 2x_3 + x_4 + 3x_5 = 2\\ 2x_1 + x_2 + 2x_3 + x_5 = 3\\ -2x_1 - 3x_2 + 2x_3 - x_4 + 2x_5 = 1 \end{array} \right .$			

2) Determine which of the matrices below are in reduced row-echelon form.

(d) $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 \end{bmatrix}$.	(a) (d)							(b)	$\left[\begin{array}{c}0\\0\\0\end{array}\right]$	1 0 0	2 0 0	0 1 0	3 4 0],	(c)	$\left[\begin{array}{c}1\\0\\0\end{array}\right]$	2 0 0	0 0 1	3 0 2	,
---	------------	--	--	--	--	--	--	-----	---	-------------	-------------	-------------	-----------	----	-----	---	-------------	-------------	-------------	---

3) Find the rank of the matrices. (a)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
, (b) $\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$.
4) Find a matrix A of rank 1 such that $A \begin{bmatrix} 5 \\ 3 \\ -9 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$.

- 5) Let \vec{x}_1 be a solution of $A\vec{x} = \vec{b}$. Justify (a) and (b):
 - (a) If \vec{x}_h is a solution of $A\vec{x} = \vec{0}$, then $\vec{x}_1 + \vec{x}_h$ is a solution of $A\vec{x} = \vec{b}$.
 - (b) If \vec{x}_2 is another solution of $A\vec{x} = \vec{b}$, then $\vec{x}_2 \vec{x}_1$ is a solution of $A\vec{x} = \vec{0}$.
- 6) Find all lower triangular 3×3 matrices X such that X^3 is the zero matrix.