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Abstract

In random media, such as clouds or biological tissue, light obeys the
Radiative Transport Equation (RTE). Using the RTE, we developed a fast
algorithm and implemented a Java applet to calculate the energy density of
light in three dimensions.

1 Introduction

The radiative transport equation (RTE) has a connection to many in-
terdisciplinary fields [1, 2, 3, 4]. In particular, light in random media is
described by the RTE. For example, optical tomography is formulated as
inverse problems of the RTE [5, 6].

A lot of numerical methods of solving the RTE have been developed
[1,2,3,4,5,6, 7], which include the Monte Carlo method, the finite element
method, the Pr method, and the method of discrete ordinates. In 1960,
Professor Kenneth Myron Case from University of Michigan published a
paper on solving the one-dimensional RTE analytically [8]. Our theory in
this report for the three-dimensional RTE is based on Case’s method [9].

In this paper we will describe the theory for the three dimensional ra-
diative transport equation. We will also delve into the implementation of a
Java applet. The applet is programmed to graph the energy density of light
in a three dimensional random medium.



2 Solving the Radiative Transport Equation

We consider the time-independent radiative transport equation (RTE)
in three dimensions:

5-Vu+ (tg + ps)u = us/ p(3, 8 u(F, 8)ds’ + S(F, 3). (1)
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Here variables are defined as follows:

7: The three dimensional position vector 7= (z,y, z).

§: The three dimensional directional vector § = (sin(6) cos(¢), sin(6)sin(¢), cos(0)).

V: The three dimensional gradient vector V = (%, 6%, %).

u(7, §): The intensity of light dependent on position 7 and direction §.

ta: The absorption constant proportional to the probability of
absorption per unit length.

ts: The scattering constant proportional to the probability of scattering
per unit length.

S(7,§): Source of light.

p(8,8'): The phase scattering function, modeling the probability of light
being scattered from direction §’ to direction S.

Here we assume linear scattering
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Note that ¢ is the linear asymmetry parameter
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2.1 Specific Intensity

We define the total attenuation pu; as

[t = Hs + [l (4)
Let us now introduce a constant c:
c= Mt (5)
Ha + s

By taking the unit of length to be 1/, we divide (1) by p;. Thus, we
rewrite (1) into a more convenient form:

S5(7, )
e

5-Vu+u= c/ p(8, 8 )u(F, 8)ds + (6)
S2



We then obtain u(7, §) as a superposition of elementary solutions u, (7, §; ),
which obey

5-Vu, +uy, = c/ p(8, 8 )u, (7, 8)ds. (7)
S2

The elementary solutions are labeled by v € R and ¢ € R? and are obtained
by separation of variables [9].

2.2 Eigenvalues

In the case of linear scattering (2), the index v which labels u,, is either
+19 where (19 > 1), or any value on (—1,1). We can calculate v as follows
[9, 10]. Let us expand u, with Legendre polynomials.

L = J20+1 o by
I GETIED R, o CiRi(5 ke krv (8)
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where the vector k is given by [9]
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Here Legendre polynomials are recursively computed as

(20 + DpP, — 1P,y

Py=1, P =y, P = 1

Moreover, spherical harmonics are given by

Yim (0, ¢) = 2l4—:r lmplm(cos 6)e™m?. (11)

By plugging (8) into (7), we end up with the following equation.
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We write

mem k)Y (8- k), (13)
where pg = 1, p1 = g, po = p3 = --- = 0. We now have
e [20+1 20 + 1 20+ 1
_r Py(1 P(p) = B
Vzg\/ CiR( Z\/ CiR( CZPZ\/ CiP(p).
(14)
We then multiply Fj,(u) and integrate both sides over u. Note that
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Py(p)Py(p)dpy = ————0y 15
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where 0y is the Kronecker’s delta function (if I = I’, then é;y = 1 and if
[ # 1, then d;y = 0). After some calculations, (14) reduces to the following
equation:

S I+1 l
;[\/WH)?—1](o—z+1)(az)5l°’l“ e e et |GV Ve
= VCIO \/mm, (16)

where o, = (1 — ¢py).
Upon rewriting (14) in the form of a matrix-vector equation Bx = vz,
we can solve for eigenvalues v and 1 as explained below.
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Note that from (16) we have
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That is,
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Hence, diagonalizing the symmetric matrix B will yield real eigenvalues
v € (0,1) and vy > 1, where 1y is the largest eigenvalue. These eigenvalues
can later be used to solve for constants Ny and N (v).

3 Finding Energy Density U(z)

The Green’s function G(7, 8; 79, So) for the radiative transport equation
satisfies

§ VG+G = c/ p(3,8)G (7, 8)ds + 6(F — 17%)8(5 — 50),  (18)
SZ

where §(7— 7)), 0(8 — Sp) are the Dirac delta functions with properties:

/OO d(z)dx =1, (19)

/_OO f(z)d(x — xo)dz = f(xg). (20)

We obtain G in (18) using u, in (7), which we write as u, (7, 3; ) = QSV(M(I;:))e*I;'F/V,
where pu(k) = §- k. We can write G as

1 . — =
Gy = Ay (u(k))e'TPeQEon=/vo 4 / AW)gu(p(k))e'TPe D=l qy
0

(21)
for z > 2z,

0

G_ = —A_¢_,, (u(k))eTPeRQodz/vo _ / AWy (u(k))eTPe=Quaz/v gy,
-1

(22)



for z < 29, where p'= (z,y). Moreover, A, A_, and A(v) are functions of
¢ that we must solve for. To solve for Ay, A_, and A(v), we integrate (18)
with respect to z as f;oj:(IS)dz for € = 0. Then we use the orthogonality
relations for ¢, (u):

1
[ i = 5o, (23)
1

| moulitwdn = N5t =), (24)

1
| i dn =0, (25)

if v #1v/. Here Ny and N(v) are given by
CVS c %8(37(1/0) - 2)(1 —Cc+ CV(VO))
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where 7(v) = 1+ 3goor?. Using the orthogonality relations and some Dirac
delta function relations we obtain:
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We can then include Ay, A_, and A(v) in (21) and (22) and combining (21)
and (22) will yield:

G(p, 2, 8; po, 20, 50) = @2n)p Q(v0q)No
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We now recover the dimension. Let us consider a point source
S(7, 8) = (7). (32)

We obtain v as
u(pe9) = ut [ /S G2, i, 20, 30)0(0)0 () dfodzodSo. (33)
R

We calculate the energy density U of light defined as

U= 1/u(f, §)ds, (34)

v

where v is the speed of light in the medium. Since U is spherically symmetric,
we measure it along the z-axis as

(=5)

—th)

v 1 (
,LLt e 0 e v
U(z) =— d 0. 35
(2) vz | Ny +/0 vN(v) A (35)

We conclude the theory for our algorithm by plotting U(z) in Figure 1.



I I
1,=0.03, u=100,g=0 ——

Monte Carlo (18min) ]
Fourier transform -

1,=0.03, =100, g=0.3 ——

10° |

Monte Carlo (30min)
1,=0.3, ug=100, g=0.3

‘IO1 3 J#
Monte Garlo (6min)

107
2
o/l

Figure 1: Energy density U(z) in (35) for different optical parameters com-

pared with results from Monte Carlo simulations [13]. For isotropic scatter-
ing, U(z) can also be obtained analytically with the Fourier transform.

4 Implementation of the Applet

We aspired to create an applet, in the programming language Java,
which can graph the intensity of light depending on a point in three dimen-

sional space.
A snippet of our applet can be seen below:



W, 003 M 100 g0 Graph

o
0.2,33.7789 [~]
g 0.4,11.0444
0.6,6.1674
0.8,4.2145
g 1.0,3.1898
1.2,2.5642
1.4,2.1433
pa 1.6,1.8408
1.8,1.6126
2.0,1.4342
P 2.2,1.2906
2.4,1.1725
U, b 2.6,1.0735
2.8,0.9893
3.0,0.9168
b4 3.2,0.8536 r
3.4,0.7981
3.6,0.7489
ps3 3.8,0.705
4.0,0.6655
4.2,0.6299
p2 4.4,0.5976
4.6,0.5681
X 4.8,0.5411
5.0,0.5163
5.2,0.4935
o 1 2 3 4 5 L3 27 k-3 9 10 54,0.4723
= AR NARIT hdl|

Figure 2: Java Applet Using Quick RTE Algorithm.

The applet simply takes the user input: g, s, and g (see page 2 of
this report) which are the absorption constant, scattering constant, and
scattering asymmetry parameter, respectively. Upon invoking the ” Graph”
button, a list of [z, U(z)] coordinates appear on the list to the right of the
graphic, and a density line is drawn on the graph. The coordinates in the
list are exact measures of intensity accurate to ﬁth of a decimal.

In the graph, the vertical axis shows (InU)g., which is given below, and
the horizontal axis is z/l;.

We discretize z as

5 =iAz, i=1,2,.,N, N =50, NAz=10l, (36)
where I; = 1/u;. We then define (InU),. as

~ InU(z) —InU(zn)

(In0)sc = InU(z1) —InU(zy)’

(37)

This scaling prevents the graph from digressing from the viewing window of
z/l; € [0,10] and (InU), € [0,1] in our applet.
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Summary

In this report we illustrated the theory for solving the three dimen-

sional radiative transport equation. Moreover, we implemented a Java ap-
plet which is formulated to graph the energy density of light in a three
dimensional random medium. The URL for the Java applet can be found
below.

URL: https://sites.google.com/site/ezrtel3/
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